International Journal of Thermophysics

, Volume 28, Issue 5, pp 1563–1577 | Cite as

Thermophysical Characterization of a CuO Thin Deposit

  • Jean-Luc Battaglia
  • Andrzej Kusiak

CuO thin deposits on a tungsten carbide (consisting of 9% cobalt) substrate are obtained by physical vapor deposition (PVD) at ambient temperature. The longitudinal thermal conductivity as well as the thermal contact resistance at the deposit–substrate interface are investigated. A periodic photothermal experiment based on infrared radiometry is implemented. The amplitude between the periodic heat flux applied on the sample and the average temperature on the heated area are measured over a low frequency range. The method does not require the absolute measurement of these two quantities given that the thermal properties of the substrate are known. Scanning electron microscopy observations show strong anisotropy and columnar structure of the deposits. Moreover, the chemical composition of the films is obtained using the Auger technique. Cobalt diffuses from the substrate toward the deposit during the deposition process. It is demonstrated that the measured thermal conductivity of the CuO layer mainly rests on the microstructure of the layer instead of the roughness of the sample.


radiative photothermal experiment thermal contact resistance thermal conductivity thin film 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cahill D.G, Bullen A., Lee S.-M. (2000). High Temp.-High Press. 32:134Google Scholar
  2. 2.
    Orain S., Scudeller Y., Brousse T. (2000). Int. J. Therm. Sci. 39:537CrossRefGoogle Scholar
  3. 3.
    Dilhaire S., Grauby S., Claeys W., Batsale J.-C. (2004). Microelectr. J. 35:811CrossRefGoogle Scholar
  4. 4.
    Faugeroux O., Claudet B., Bénet S., Serra J.J, Boisson D. (2003). Int. J. Therm. Sci. 43:383CrossRefGoogle Scholar
  5. 5.
    Battaglia J.-L., Kusiak A., Bamford M., Batsale J.-C. (2006). Int. J. Therm. Sci. 45:1035CrossRefGoogle Scholar
  6. 6.
    Bhusari D.M, Teng C.W, Chen K.H, Wie S.L, Chen L.C (1997). Rev. Sci. Instrum. 68:4180CrossRefADSGoogle Scholar
  7. 7.
    Langer G., Hartmann J., Reichling M. (1997). Rev. Sci. Instrum. 68:1510CrossRefADSGoogle Scholar
  8. 8.
    Chen G. (2000). J. Nanoparticle Res. 2:199CrossRefGoogle Scholar
  9. 9.
    Ju Y.S, Goodson K.E. (1999). Appl. Phys. Lett. 74:3005CrossRefADSGoogle Scholar
  10. 10.
    Sheppard K.G, Nakahara S. (1991). Process. Adv. Mat. 1:27Google Scholar
  11. 11.
    Wieder H., Czanderna A.W. (1966). J. Appl. Phys. 37:184CrossRefADSGoogle Scholar
  12. 12.
    D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 87th Ed. (CRC Press, Boca Raton, Florida, 2006).Google Scholar
  13. 13.
    Gustavsson M., Karawacki E., Gustafsson S.E. (1994). Rev. Sci. Instrum. 65:3856CrossRefADSGoogle Scholar
  14. 14.
    Coleman T.F, Li Y. (1996). SIAM J. Optimiz. 6:418MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Coleman T.F, Li Y. (1994). Math. Program. 67:189CrossRefMathSciNetGoogle Scholar
  16. 16.
    Walther H.G. (2002). Appl. Surface Sci. 193:156CrossRefGoogle Scholar
  17. 17.
    Nicolaides L., Mandelis A. (2001). J. Appl. Phys. 90:1255CrossRefADSGoogle Scholar
  18. 18.
    A. L. Edwards, A Compilation of Thermal Property Data for Computer Heat-Conduction Calculations, UCRL-50589 (University of California, Lawrence Radiation Laboratory, 1969).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire inter établissement ‘TRansferts Ecoulements Fluides Energétique’UMR 8508, Ecole Nationale Supérieure d’Arts et Métiers, Esplanade des Arts et MétiersTalence CedexFrance

Personalised recommendations