International Journal of Thermophysics

, Volume 28, Issue 5, pp 1470–1489 | Cite as

Simultaneous Estimation of Thermal Properties of Living Tissue Using Noninvasive Method

  • Kai Yue
  • Xinxin Zhang
  • Fan Yu

A new noninvasive measurement method is presented for simultaneous estimation of the key thermal properties of cylindrical living tissue. This method is based on heating of the surface of a cylinder and measuring surface temperatures at three points on the cylinder. Numerical calculations and theoretical analysis for the corresponding two-dimensional model are carried out. The results have demonstrated the feasibility of the proposed method. The selection, crossover, and mutation operators of a new real-coded genetic algorithm (GA) are designed in this paper to solve the problem of parameter optimization. Then, a set of simulations are performed to verify the effectiveness of the proposed method as well as to optimize the design of the experiments. Finally, a series of experiments is performed to measure the thermal parameters of the human forearm. The experimental results indicate that the obtained parameters, such as the thermal conductivity, blood perfusion, and volumetric heat capacity, are within the range of reference values. The proposed method is easy to implement in practical applications.


bioheat transfer blood perfusion genetic algorithm heat capacity noninvasive measurement thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diller K.R., Ryan T.P., (1998). ASME J. Heat Transfer 120:810Google Scholar
  2. 2.
    Liu J., Wang C.C. (1997). Bioheat Transfer. Science Press, Beijing, (in Chinese).Google Scholar
  3. 3.
    J. C Chato, ed., Thermal Problems in Biotechnique (ASME Symp. Ser., New York, 1968).Google Scholar
  4. 4.
    Bowman H.F., Cravalho E.G., Woods M., (1975). Ann. Rev. Biophys. Bioeng. 4:43CrossRefGoogle Scholar
  5. 5.
    Arkin H., Holmes K.R., Chen M.M., (1989). ASME J. Biomech. Eng. 111:27CrossRefGoogle Scholar
  6. 6.
    Wei D., Saidel G.M., Jones S.C., (1990). IEEE Trans. Biomed. Eng. 137:1159CrossRefGoogle Scholar
  7. 7.
    Patel P.A., Valvano J.W., Pearce J.A., (1987). ASME J. Biomech. Eng. 109:330Google Scholar
  8. 8.
    Naresh C., Cao H., David Y.Y., Valvano J.W., (2001). IEEE Trans. Biomed. Eng. 48:261CrossRefGoogle Scholar
  9. 9.
    Scott E.P., Robinson P.S., Diller T.E., (1998). Meas. Sci. Technol. 9:889CrossRefADSGoogle Scholar
  10. 10.
    ReillyT.B., Gonzales T.L., Diller T.E., (1998). ASME J. Biomech. Eng. 34:67Google Scholar
  11. 11.
    Deng Z.S., Liu J. (2001). Chin. J. Biomed. Eng. 20:607, (in Chinese).Google Scholar
  12. 12.
    Valvano J.W., Allen J.T., Bowman H.F., (1984). ASME J. Biomech. Eng. 106:193Google Scholar
  13. 13.
    Wissler E.H., (1998). J. Appl. Physiol. 55:35Google Scholar
  14. 14.
    Pennes H.H., (1948). J. Appl. Physiol. 1:93ADSGoogle Scholar
  15. 15.
    J. A. J. Stolwijk, A Mathematical Model of Physiological Temperature Regulation in Man (NASA, CR1, 1971).Google Scholar
  16. 16.
    Yue K., Zhang X.X., Yu F. (2004). J. Beijing Sci. Technol. 13:255, (in Chinese).Google Scholar
  17. 17.
    Beck J.V, Arnold K.J., (1997). Parameter Estimation in Engineering and Science. John Wiley and Sons, New YorkGoogle Scholar
  18. 18.
    Deb K., Anand A., Joshi D., (2002). Evol. Comput. 10:345CrossRefGoogle Scholar
  19. 19.
    Tsutsui S., Goldberg D.E., (2001). Inform. Sci. 133:229MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Thermal EngineeringUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations