International Journal of Thermophysics

, Volume 28, Issue 1, pp 123–132 | Cite as

Photoacoustic Thermal Characterization of Porous Rare-Earth Phosphate Ceramics

  • Sajan D. George
  • Rajesh Komban
  • K. G. K. Warrier
  • P. Radhakrishnan
  • V. P. N. Nampoori
  • C. P. G. Vallabhan

The laser induced non-destructive photoacoustic technique has been employed to measure the thermal diffusivity of lanthanum phosphate ceramics prepared by the sol–gel route. The thermal diffusivity value was evaluated by knowing the transition frequency between the thermally thin to thermally thick region from the log–log plot of photoacoustic amplitude versus chopping frequency. Analysis of the data was carried out on the basis of the one-dimensional model of Rosencwaig and Gersho. The present investigation reveals that the sintering temperature has great influence on the propagation of heat carriers and hence on the thermal diffusivity value. The results were interpreted in terms of variations in porosity with sintering temperature as well as with changes in grain size.


Photoacoustic porosity rare-earth phosphate ceramics thermal diffusivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kingery W.D., Dowen H.K., Uhlmann D.R. (1976). Introduction to Ceramics. Wiley, New YorkGoogle Scholar
  2. 2.
    Hikichi Y., Nomura T. (1987) . J. Am. Ceram. Soc 70:C-252Google Scholar
  3. 3.
    Morgan P.E.D., Marshall D.B. (1995). J. Am. Ceram. Soc 78:1553CrossRefGoogle Scholar
  4. 4.
    Liu D.M., Taun W.H. (1996). Acta Mater 44:813CrossRefGoogle Scholar
  5. 5.
    Davis J.B., Marshall D.B., Morgan P.E.D. (2000). J. Eur. Ceram. Soc 20:583CrossRefGoogle Scholar
  6. 6.
    Tsagareishvili D.Sh., Gvelesiani G.G., Orlovskii V.P., Belyaevskaya T.V., Repko V.P. (1972). Neorg. Mater 8:1790Google Scholar
  7. 7.
    Min W., Miyahara D., Yokoi K., Yamaguchi T., Daimon K., Hikichi Y., Matsubara T., Ota T. (2001). Mater. Res. Bull 36:939CrossRefGoogle Scholar
  8. 8.
    George S.D., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. (2003). Phys. Rev. B 68:165319CrossRefADSGoogle Scholar
  9. 9.
    George S.D., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. (2003). J. Phys. D: Appl. Phys 36:990CrossRefADSGoogle Scholar
  10. 10.
    George S.D., Saravanan S., Anantharaman M.R., Venketachalam S., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. (2004). Phys. Rev. B 69:235201CrossRefADSGoogle Scholar
  11. 11.
    George S.D., Radhakrishnan P., Nampoori V.P.N., Vallabhan C.P.G. (2003). Appl. Phys. B 77:633CrossRefADSGoogle Scholar
  12. 12.
    S. D. George, A. A. Anappara, P. R. S. Warrier, K. G. K. Warrier, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, Proc. SPIE – 5118 (2003), p. 207.Google Scholar
  13. 13.
    Contreras M.E., Serrato J., Zarate J., Pacheco C., Villasenor L. (1997). J. Am. Ceram. Soc 80:245CrossRefGoogle Scholar
  14. 14.
    Chen P., Tai-il Mah (1997). J. Mater. Sci 32:3863CrossRefGoogle Scholar
  15. 15.
    Bo L., Liya S., Xiaozhen L., Tianmain W., Ishii K., Sasaki Y., Kashiwaya Y., Takahashi H., Shibayama T. (2000). J. Mater. Sci. Lett 19:343CrossRefGoogle Scholar
  16. 16.
    S. Sankara Raman, V. P. N. Nampoori, C. P. G. Vallabhan, G. Ambadas, and S. Sugunan, Appl. Phys. Lett. 67:2939 (1995) and references therein.Google Scholar
  17. 17.
    Calderon A., Munoz Hernaandex R.A., Tomas S.A., Cruz–Orea A., Sanchez Sincencio F. (1998). J. Appl. Phys 84:6327CrossRefADSGoogle Scholar
  18. 18.
    Perondi L.F., Miranda L.C.M. (1987). J. Appl. Phys 62:2955CrossRefADSGoogle Scholar
  19. 19.
    Rosencwaig A., Gersho A. (1976). J. Appl. Phys 47:64CrossRefADSGoogle Scholar
  20. 20.
    Lima W.M., Biondo V., Weinand W.R., Nogueria E.S., Medina A.N., Baesso M.L., Bento A.C. (2005). J. Phys. C.: Condens. Matter 17:1239CrossRefADSGoogle Scholar
  21. 21.
    E. Litoysky, T. Gambaryan-Roisman, M. Shapiro, and A. Shavit, Trends in Heat, Mass and Momentum Transfer, Vol. 3 (Council of Scientific Research Integration, Trivandrum, India, 1997), p. 147.Google Scholar
  22. 22.
    Kerrisk J.F. (1971). J. Appl. Phy 42:267CrossRefADSGoogle Scholar
  23. 23.
    Codbee H.W., Ziegler W.T. (1966). J. Appl. Phys 37:56CrossRefADSGoogle Scholar
  24. 24.
    Liu D.M., Chen Ch.J., Lin L.J. (1994). J. Appl. Phys 75:3765CrossRefADSGoogle Scholar
  25. 25.
    A. Sanchez-Lavega, A. Salazar, A. Ocariz, L. Pottier, E. Gomez, L. M. Villar, and E. Macho, Appl. Phys. A 65:15 (1997) and references therein.Google Scholar
  26. 26.
    Cunningham M.E., Peddicord K.L. (1981). Int. Heat Mass Transfer 24:1081CrossRefGoogle Scholar
  27. 27.
    Rice R.W. (1996). J. Mater. Sci 31:102CrossRefADSGoogle Scholar
  28. 28.
    Watari K., Nakano H., Sato K., Urabe K., Ishisaki K., Cao S., Mori K. (2003). J. Am. Ceram. Soc 86:1812CrossRefGoogle Scholar
  29. 29.
    Swain M.V., Johnson L.F., Syed R., Haseelman D.P.H. (1988) . J. Mater. Sci. Lett 5:799CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sajan D. George
    • 1
  • Rajesh Komban
    • 2
  • K. G. K. Warrier
    • 2
  • P. Radhakrishnan
    • 3
  • V. P. N. Nampoori
    • 3
  • C. P. G. Vallabhan
    • 3
  1. 1.Centre for Laser Spectroscopy, Manipal Life Science CentreManipal universityManipalIndia
  2. 2.Ceramic Technology Division, Regional Research LaboratoryCSIRThiruvanathapuramIndia
  3. 3.International School of PhotonicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations