International Journal of Thermophysics

, Volume 27, Issue 5, pp 1387–1405 | Cite as

Universal Crossover Approach to Equation of State for Fluids

  • M. Yu. Belyakov
  • E. E. Gorodetskii

It is well known that any classical equation of state fails to describe the properties of fluids in the critical region, where the behavior of fluids is strongly affected by density fluctuations. In the present work, a universal approach to incorporate the effects of density fluctuations in the global behavior of one-component fluids is proposed. As an illustration of our general approach, a crossover generalization of a four-parametric cubic equation of state, which can be useful for engineering applications, is demonstrated. The obtained crossover equation reproduces Ising-like singular scaling behavior in the critical region and reduces to the original cubic equation of state far away from the critical point. In addition, the crossover equation of state is applied to describe thermodynamic properties of methane, ethane, carbon dioxide, and water. It is shown that incorporation of critical fluctuations leads to a significant improvement in the ability of the cubic equation to represent thermodynamic properties and liquid–vapor equilibrium of one-component fluids.


coexistence curve critical point equation of state one-component fluids thermodynamic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Walas, Phase Equilibrium in Chemical Engineering (Butterworths, Stoneham, Massachusetts, 1985).Google Scholar
  2. 2.
    A. Anderko, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. , C. J. Peters, and H. J. White, eds. (Elsevier, Amsterdam, 2000), p. 75.Google Scholar
  3. 3.
    Kostrowicka Wyczalkowska A., Anisimov M.A., Sengers J.V. (1999). Fluid Phase Equilib. 158–160:523Google Scholar
  4. 4.
    Kostrowicka Wyczalkowska A., Sengers J.V., Anisimov M.A. (2004). Physica A 334:482CrossRefADSGoogle Scholar
  5. 5.
    Kiselev S.B. (1998). Fluid Phase Equilib. 147:7MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kiselev S.B., Ely J.F. (2003). J. Chem. Phys. 119:8645CrossRefADSGoogle Scholar
  7. 7.
    Landau L.D., Lifshitz E.M. (1980). Statistical Physics, 3rd ed. Pergamon, New YorkGoogle Scholar
  8. 8.
    Patashinskii A.Z., Pokrovskii V.L. (1979). Fluctuation Theory of Phase Transitions. Pergamon, OxfordGoogle Scholar
  9. 9.
    Belyakov Yu.M., Kiselev S.B. (1992). Physica A 190:75CrossRefADSGoogle Scholar
  10. 10.
    Anisimov M.A., Kiselev S.B., Sengers J.V., Tang S. (1992). Physica A 188:487CrossRefADSGoogle Scholar
  11. 11.
    Belyakov M.Yu., Kiselev S.B., Rainwater J.C. (1997). J. Chem. Phys. 107:3085CrossRefADSGoogle Scholar
  12. 12.
    M. A. Anisimov and J. V. Sengers, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, eds. (Elsevier, Amsterdam, 2000), p. 381.Google Scholar
  13. 13.
    Schofield P., Litster J.D., Ho J.F. (1969). Phys. Rev. Lett. 23:1098CrossRefADSGoogle Scholar
  14. 14.
    NIST Standard Reference Database, Scholar
  15. 15.
    Fisher M.E., Orkoulas G. (2000). Phys. Rev. Lett. 85:696CrossRefADSGoogle Scholar
  16. 16.
    Kim Y.C., Fisher M.E., Orkoulas G. (2003). Phys. Rev. E 67:061506CrossRefADSGoogle Scholar
  17. 17.
    Sengers J.V., Levelt Sengers J.M.H. (1986). Ann. Rev. Phys. Chem. 37:189CrossRefGoogle Scholar
  18. 18.
    Liu J., Fisher M.E. (1989). Physica A 156:35MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Oil and Gas Research Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations