Skip to main content
Log in

Isochoric Heat Capacity of CO2 + n-Decane Mixtures in the Critical Region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The isochoric heat capacity of two binary (CO2+n-decane) mixtures (0.095 and 0.178 mole fraction of n-decane) have been measured with a high- temperature, high-pressure, nearly constant volume adiabatic calorimeter. Measurements were made at nineteen near-critical liquid and vapor densities between 87 and 658 kg·m−3 for the composition of 0.095 mole fraction n-decane and at nine densities between 83 and 458 kg·m−3 for the composition of 0.178 mole fraction n-decane. The range of temperatures was 295 to 568 K. These temperature and density ranges include near- and supercritical regions. The measurements were performed in both one- and two-phase regions including the vapor + liquid coexistence curve. The uncertainty of the heat- capacity measurements is estimated to be 2% (coverage factor k=2). The uncertainty in temperature is 15 mK, and that for density measurements is 0.06%. The liquid and vapor one-\((C_{V1}^{\prime}, C_{V1}^{\prime \prime})\) and two-phase \((C_{V2}^{\prime}, C_{V2}^{\prime \prime})\) isochoric heat capacities, temperatures (T S), and densities (ρS) at saturation were measured by using the well-established method of quasi-static thermograms for each filling density. The critical temperatures (T C), the critical densities (ρC), and the critical pressure (P C) for the CO2+n-decane mixtures were extracted from the isochoric heat-capacity measurements on the coexistence curve. The observed isochoric heat capacity along the critical isochore of the CO2+n-decane mixture exhibits a renormalization of the critical behavior of C V X typical for mixtures. The values of the characteristic parameters (K 1, K 2), temperatures (τ12), and the characteristic density differences \((\Delta \bar{\rho}_1, \Delta \bar{\rho}_2)\) were estimated for the CO2+n-decane mixture by using the critical-curve data and the theory of critical phenomena in binary mixtures. The ranges of conditions were defined on the T-x plane for the critical isochore and the ρ-x plane for the critical isotherm, for which we observed renormalization of the critical behavior for the isochoric heat capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Schneider, in Supercritical Fluids, E. Kiran and J. M. H. Levelt Sengers, eds. (Kluwer, Dordrecht, 1994), p. 739.

  2. G. M. Schneider, in Proc. Int. Symp. Supercritical Fluids, M. Perrut, ed. (Nice, France, 1988), p. 1.

  3. McHugh M., Krukonis V. (1986). Supercritical Fluid Extraction. Butterworths, London

    Google Scholar 

  4. Extraction with Supercritical Gases, G. M. Schneider, E. Stahl, and G. Wilke, eds. (Verlag Chemie, Weinheim, 1980).

  5. Saito S. (1995) J. Supercritical Fluids 8:177

    Article  Google Scholar 

  6. Doscher T.M., El-Arabi M. (1982). Oil Gas J. 80:144

    Google Scholar 

  7. Orr F.M., Sliva M.K., Lien C.L. (1982). Soc. Pet. Eng. J. 22:281

    Google Scholar 

  8. Holm L.W., Josendal V.A. (1982). Soc. Pet. Eng. J. 22:87

    Google Scholar 

  9. F. I. Stalkup, Soc. Pet. Eng. Monograph 8 (1983).

  10. Stalkup F.I. (1983). J. Petrol Tech. 1:815

    Google Scholar 

  11. van Konynenburg P.H. and Scott R.L. (1980). Phils. Trans. R. Soc. London A 298:495

    ADS  Google Scholar 

  12. Horstmann S., Fischer K., and Gmehling J. (2000). J. Chem. Thermodyn. 32:451

    Article  Google Scholar 

  13. Schneider G.M. (1998). J. Supercritical Fluids 13:5

    Article  Google Scholar 

  14. Schneider G.M. (1978). Ang. Chem 17:701

    Article  Google Scholar 

  15. Schneider G.M. (1983). Fluid Phase Equilib 10:141

    Article  Google Scholar 

  16. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2004). J. Supercritical Fluids 33:209

    Article  Google Scholar 

  17. Abdulagatov I.M., Polikhronidi N.G., and Batyrova R.G. (1994). J. Chem. Thermodyn. 26:1031

    Article  Google Scholar 

  18. Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G. (1994). Ber. Bunsenges Phys. Chem. 98:1068

    Google Scholar 

  19. Amirkhanov Kh.I., Vikhrov D.I., Alibekov B.G., and Mirskaya V.A. (1981). Isochoric Heat Capacities and Other Caloric Properties of Hydrocarbons. DSC Russian Academy of Sciences, Makhachkala

    Google Scholar 

  20. Reamer H.H. and Sage B.H. (1963). J. Chem. Eng. Data 8:508

    Article  Google Scholar 

  21. Nagarajan N., and Robinson R.L. (1986). J. Chem. Eng. Data 31:168

    Article  Google Scholar 

  22. Gulari E.S., Saad H., and Bae V.C., in Supercritical Fluids. Chemical and Engineering Principles and Applications, Squires T.G., and Paulaitis M.E., eds. (ACS Symp. Ser. 329, Washington, DC, 1987), p. 2.

  23. Polikhronidi N.G., and Batyrova R.G. (1997). Russ. High Temperature 35:537

    Google Scholar 

  24. Shaver R.D., Robinson R.L., and Gasem K.A.M. (2001). Fluid Phase Equilib 179:43

    Article  Google Scholar 

  25. Chou G.F., Forbert R.R., and Prausnitz J.M. (1990). J. Chem. Eng. Data 35:26

    Article  Google Scholar 

  26. Bufkin B., M. S. Thesis (Oklahoma State University, Stillwater, Oklahoma, 1986).

  27. Gurdial G.S., Foster N.R., Yun S.L.J., and Tilly K.D., in Supercritical Fluid Engineering Sciences. Fundamentals and Applications (ACS Symposium Ser. 514, Washington, DC, 1993), pp. 34–45.

  28. Furuya T., and Teja A.S. (2000). Ind. Eng. Chem. Res 39:4828

    Article  Google Scholar 

  29. Roth M. (2003). Fluid Phase Equilib 212:1

    Article  Google Scholar 

  30. Abdulagatov A.I., Stepanov G.V., and Abdulagatov I.M. (2001). Russ J. Structural Chem 42:585

    Google Scholar 

  31. Polikhronidi N.G., Batyrova R.G., and Abdulagatov I.M. (2000). Fluid Phase Equilib 175:153

    Article  Google Scholar 

  32. Polikhronidi N.G., Batyrova R.G., and Abdulagatov I.M. (2000). Int. J. Thermophys 21:1073

    Article  Google Scholar 

  33. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Batyrova R.G. (2001). J. Chem. Eng. Data 46:1064

    Article  Google Scholar 

  34. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2001). Int. J. Thermophys 22:189

    Article  Google Scholar 

  35. Polikhronidi N.G., Abdulagatov I.M., and Batyrova R.G. (2002). Fluid Phase Equilib 201:269

    Article  Google Scholar 

  36. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2002). Int. J. Thermophys 23:745

    Article  Google Scholar 

  37. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2003). Int. J. Thermophys 24:405

    Article  Google Scholar 

  38. Mursalov B.A., Abdulagatov I.M., Dvoryanchikov V.I., Kamalov A.N., and Kiselev S.B. (1999). Int. J. Thermophys. 20: 1497

    Article  Google Scholar 

  39. Vargaftik N.B. (1983). Handbook of Physical Properties of Liquids and Gases, 2nd Ed. Hemisphere, New York

    Google Scholar 

  40. Wagner W., and Pruß A. (2002). J. Phys. Chem. Ref. Data 31:387

    Article  ADS  Google Scholar 

  41. Keyes F.G., and Smith L.B. (1933). Proc. Amer. Acad. Arts Sci. 68:505

    Google Scholar 

  42. Kamilov I.K., Stepanov G.V., Abdulagatov I.M., Rasulov A.R., and Milikhina E.I. (2001). J. Chem. Eng. Data 46:1556

    Article  Google Scholar 

  43. Valyashko V.M., Abdulagatov I.M., and Levelt-Sengers J.M.H. (2000). J. Chem. Eng. Data 45:1139

    Article  Google Scholar 

  44. Abdulagatov I.M., Mursalov B.A., and Dvoryanchikov V.I. (2000). J. Chem. Eng. Data 45:1133

    Article  Google Scholar 

  45. Sengers J.V., and J. M. H. Levelt Sengers, in Progress in Liquid Physics, Croxton C.A., ed. (Wiley, New York, 1978), p. 103.

  46. Rowlinson J.S., and Swinton F.L. (1982). Liquids and Liquid Mixtures, 3rd Ed. Butterworth Scientific, London

    Google Scholar 

  47. Rabezkii M.G., Bazaev A.R., Abdulagatov I.M., Magee J.W., and Bazaev E.A. (2001). J. Chem. Eng. Data 46:1610

    Article  Google Scholar 

  48. Bazaev A.R., Abdulagatov I.M., Magee J.W., Bazaev E.A., and Ramazanova A.E. (2004). Int. J. Thermophys 25:805

    Article  Google Scholar 

  49. Urusova M.A., and Valyashko V.M. (2001). Russ J. Inorg. Chem 46:770

    Google Scholar 

  50. Urusova M.A., and Valyashko V.M. (2001). Russ. J. Inorg. Chem. 46:777

    Google Scholar 

  51. Stretenskaya N.G., Sadus R.J., and Franck E.U. (1995). J. Phys. Chem 99:4273

    Article  Google Scholar 

  52. Shmonov V.M., Sadus R.J., and Franck E.U. (1993). J. Phys. Chem. 97:9054

    Article  Google Scholar 

  53. Mather A.E., Sadus R.J., and Franck E.U. (1993). J. Chem. Thermodyn. 25:771

    Article  Google Scholar 

  54. Lemmon E.W., and Span R., J. Chem. Eng. Data (in press).

  55. Span R., and Wagner W. (1996). J. Phys. Chem. Ref. Data 25:1509

    ADS  Google Scholar 

  56. Abdulagatov A.I., Stepanov G.V., and Abdulagatov I.M., submitted to Russ. J. High Temp.

  57. Rainwater J.C. (1989). Int. J. Thermophys 10:357

    Article  Google Scholar 

  58. Anisimov M.A. (1991). Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach, Philadelphia

    Google Scholar 

  59. Anisimov M.A., Gorodezkii E.E., Kulikov V.D., and Sengers J.V. (1995). Phys. Rev. E 51:1199

    Article  ADS  Google Scholar 

  60. Anisimov M.A., Gorodezkii E.E., Kulikov V.D., Povopdyrev A.A., and Sengers J.V. (1995). Physica A 220:277

    Article  ADS  Google Scholar 

  61. Anisimov M.A., and Sengers J.V., in Equations of State for Fluids and Fluids Mixtures, J. V. Sengers, R. F. Kayser, Peters C.J., and White H.J., eds. (Elsevier, Amsterdam, 2000), p. 381.

  62. Fisher M.E. (1968). Phys. Rev. B 176:257

    Article  ADS  Google Scholar 

  63. Abdulkadirova Kh.S., Wyczalkowska A., Anisimov M.A., and Sengers J.V. (2002). J. Chem. Phys. 116:4597

    Article  ADS  Google Scholar 

  64. Albright P.C., Edwards T.J., Chen Z.Y., and Sengers J.V. (1987). J Chem Phys 87:1717

    Article  ADS  Google Scholar 

  65. Krichevskii I.R. (1967). Russ. J. Phys. Chem 41:1332

    Google Scholar 

  66. Levelt Sengers J.M.H., Morrison G., Nielson G., Chang R.F., and Everhart C.M. (1986). Int. J. Thermophys. 7:231

    Article  Google Scholar 

  67. J. M. H. Levelt Sengers, in Supercritical Fluid Technology. Ely J.F., and Bruno T.J., eds. (CRC Press, Boca Raton, Florida, 1991), p. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikhronidi, N.G., Batyrova, R.G., Abdulagatov, I.M. et al. Isochoric Heat Capacity of CO2 + n-Decane Mixtures in the Critical Region. Int J Thermophys 27, 729–759 (2006). https://doi.org/10.1007/s10765-006-0056-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0056-z

Keywords

Navigation