Advertisement

International Journal of Thermophysics

, Volume 27, Issue 3, pp 729–759 | Cite as

Isochoric Heat Capacity of CO2 + n-Decane Mixtures in the Critical Region

  • N. G. Polikhronidi
  • R. G. Batyrova
  • I. M. Abdulagatov
  • G. V. Stepanov
Article

The isochoric heat capacity of two binary (CO2+n-decane) mixtures (0.095 and 0.178 mole fraction of n-decane) have been measured with a high- temperature, high-pressure, nearly constant volume adiabatic calorimeter. Measurements were made at nineteen near-critical liquid and vapor densities between 87 and 658 kg·m−3 for the composition of 0.095 mole fraction n-decane and at nine densities between 83 and 458 kg·m−3 for the composition of 0.178 mole fraction n-decane. The range of temperatures was 295 to 568 K. These temperature and density ranges include near- and supercritical regions. The measurements were performed in both one- and two-phase regions including the vapor + liquid coexistence curve. The uncertainty of the heat- capacity measurements is estimated to be 2% (coverage factor k=2). The uncertainty in temperature is 15 mK, and that for density measurements is 0.06%. The liquid and vapor one-\((C_{V1}^{\prime}, C_{V1}^{\prime \prime})\) and two-phase \((C_{V2}^{\prime}, C_{V2}^{\prime \prime})\) isochoric heat capacities, temperatures (T S), and densities (ρS) at saturation were measured by using the well-established method of quasi-static thermograms for each filling density. The critical temperatures (T C), the critical densities (ρC), and the critical pressure (P C) for the CO2+n-decane mixtures were extracted from the isochoric heat-capacity measurements on the coexistence curve. The observed isochoric heat capacity along the critical isochore of the CO2+n-decane mixture exhibits a renormalization of the critical behavior of C V X typical for mixtures. The values of the characteristic parameters (K 1, K 2), temperatures (τ12), and the characteristic density differences \((\Delta \bar{\rho}_1, \Delta \bar{\rho}_2)\) were estimated for the CO2+n-decane mixture by using the critical-curve data and the theory of critical phenomena in binary mixtures. The ranges of conditions were defined on the T-x plane for the critical isochore and the ρ-x plane for the critical isotherm, for which we observed renormalization of the critical behavior for the isochoric heat capacity.

Keywords

adiabatic calorimeter carbon dioxide coexistence curve critical point equation of state isochoric heat capacity Krichevskii parameter n-decane supercritical fluid mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.M. Schneider, in Supercritical Fluids, E. Kiran and J. M. H. Levelt Sengers, eds. (Kluwer, Dordrecht, 1994), p. 739.Google Scholar
  2. 2.
    G. M. Schneider, in Proc. Int. Symp. Supercritical Fluids, M. Perrut, ed. (Nice, France, 1988), p. 1.Google Scholar
  3. 3.
    McHugh M., Krukonis V. (1986). Supercritical Fluid Extraction. Butterworths, LondonGoogle Scholar
  4. 4.
    Extraction with Supercritical Gases, G. M. Schneider, E. Stahl, and G. Wilke, eds. (Verlag Chemie, Weinheim, 1980).Google Scholar
  5. 5.
    Saito S. (1995) J. Supercritical Fluids 8:177CrossRefGoogle Scholar
  6. 6.
    Doscher T.M., El-Arabi M. (1982). Oil Gas J. 80:144Google Scholar
  7. 7.
    Orr F.M., Sliva M.K., Lien C.L. (1982). Soc. Pet. Eng. J. 22:281Google Scholar
  8. 8.
    Holm L.W., Josendal V.A. (1982). Soc. Pet. Eng. J. 22:87Google Scholar
  9. 9.
    F. I. Stalkup, Soc. Pet. Eng. Monograph 8 (1983).Google Scholar
  10. 10.
    Stalkup F.I. (1983). J. Petrol Tech. 1:815Google Scholar
  11. 11.
    van Konynenburg P.H. and Scott R.L. (1980). Phils. Trans. R. Soc. London A 298:495ADSGoogle Scholar
  12. 12.
    Horstmann S., Fischer K., and Gmehling J. (2000). J. Chem. Thermodyn. 32:451CrossRefGoogle Scholar
  13. 13.
    Schneider G.M. (1998). J. Supercritical Fluids 13:5CrossRefGoogle Scholar
  14. 14.
    Schneider G.M. (1978). Ang. Chem 17:701CrossRefGoogle Scholar
  15. 15.
    Schneider G.M. (1983). Fluid Phase Equilib 10:141CrossRefGoogle Scholar
  16. 16.
    Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2004). J. Supercritical Fluids 33:209CrossRefGoogle Scholar
  17. 17.
    Abdulagatov I.M., Polikhronidi N.G., and Batyrova R.G. (1994). J. Chem. Thermodyn. 26:1031CrossRefGoogle Scholar
  18. 18.
    Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G. (1994). Ber. Bunsenges Phys. Chem. 98:1068Google Scholar
  19. 19.
    Amirkhanov Kh.I., Vikhrov D.I., Alibekov B.G., and Mirskaya V.A. (1981). Isochoric Heat Capacities and Other Caloric Properties of Hydrocarbons. DSC Russian Academy of Sciences, MakhachkalaGoogle Scholar
  20. 20.
    Reamer H.H. and Sage B.H. (1963). J. Chem. Eng. Data 8:508CrossRefGoogle Scholar
  21. 21.
    Nagarajan N., and Robinson R.L. (1986). J. Chem. Eng. Data 31:168CrossRefGoogle Scholar
  22. 22.
    Gulari E.S., Saad H., and Bae V.C., in Supercritical Fluids. Chemical and Engineering Principles and Applications, Squires T.G., and Paulaitis M.E., eds. (ACS Symp. Ser. 329, Washington, DC, 1987), p. 2.Google Scholar
  23. 23.
    Polikhronidi N.G., and Batyrova R.G. (1997). Russ. High Temperature 35:537Google Scholar
  24. 24.
    Shaver R.D., Robinson R.L., and Gasem K.A.M. (2001). Fluid Phase Equilib 179:43CrossRefGoogle Scholar
  25. 25.
    Chou G.F., Forbert R.R., and Prausnitz J.M. (1990). J. Chem. Eng. Data 35:26CrossRefGoogle Scholar
  26. 26.
    Bufkin B., M. S. Thesis (Oklahoma State University, Stillwater, Oklahoma, 1986).Google Scholar
  27. 27.
    Gurdial G.S., Foster N.R., Yun S.L.J., and Tilly K.D., in Supercritical Fluid Engineering Sciences. Fundamentals and Applications (ACS Symposium Ser. 514, Washington, DC, 1993), pp. 34–45.Google Scholar
  28. 28.
    Furuya T., and Teja A.S. (2000). Ind. Eng. Chem. Res 39:4828CrossRefGoogle Scholar
  29. 29.
    Roth M. (2003). Fluid Phase Equilib 212:1CrossRefGoogle Scholar
  30. 30.
    Abdulagatov A.I., Stepanov G.V., and Abdulagatov I.M. (2001). Russ J. Structural Chem 42:585Google Scholar
  31. 31.
    Polikhronidi N.G., Batyrova R.G., and Abdulagatov I.M. (2000). Fluid Phase Equilib 175:153CrossRefGoogle Scholar
  32. 32.
    Polikhronidi N.G., Batyrova R.G., and Abdulagatov I.M. (2000). Int. J. Thermophys 21:1073CrossRefGoogle Scholar
  33. 33.
    Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Batyrova R.G. (2001). J. Chem. Eng. Data 46:1064CrossRefGoogle Scholar
  34. 34.
    Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2001). Int. J. Thermophys 22:189CrossRefGoogle Scholar
  35. 35.
    Polikhronidi N.G., Abdulagatov I.M., and Batyrova R.G. (2002). Fluid Phase Equilib 201:269CrossRefGoogle Scholar
  36. 36.
    Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2002). Int. J. Thermophys 23:745CrossRefGoogle Scholar
  37. 37.
    Polikhronidi N.G., Abdulagatov I.M., Magee J.W., and Stepanov G.V. (2003). Int. J. Thermophys 24:405CrossRefGoogle Scholar
  38. 38.
    Mursalov B.A., Abdulagatov I.M., Dvoryanchikov V.I., Kamalov A.N., and Kiselev S.B. (1999). Int. J. Thermophys. 20: 1497CrossRefGoogle Scholar
  39. 39.
    Vargaftik N.B. (1983). Handbook of Physical Properties of Liquids and Gases, 2nd Ed. Hemisphere, New YorkGoogle Scholar
  40. 40.
    Wagner W., and Pruß A. (2002). J. Phys. Chem. Ref. Data 31:387CrossRefADSGoogle Scholar
  41. 41.
    Keyes F.G., and Smith L.B. (1933). Proc. Amer. Acad. Arts Sci. 68:505Google Scholar
  42. 42.
    Kamilov I.K., Stepanov G.V., Abdulagatov I.M., Rasulov A.R., and Milikhina E.I. (2001). J. Chem. Eng. Data 46:1556CrossRefGoogle Scholar
  43. 43.
    Valyashko V.M., Abdulagatov I.M., and Levelt-Sengers J.M.H. (2000). J. Chem. Eng. Data 45:1139CrossRefGoogle Scholar
  44. 44.
    Abdulagatov I.M., Mursalov B.A., and Dvoryanchikov V.I. (2000). J. Chem. Eng. Data 45:1133CrossRefGoogle Scholar
  45. 45.
    Sengers J.V., and J. M. H. Levelt Sengers, in Progress in Liquid Physics, Croxton C.A., ed. (Wiley, New York, 1978), p. 103.Google Scholar
  46. 46.
    Rowlinson J.S., and Swinton F.L. (1982). Liquids and Liquid Mixtures, 3rd Ed. Butterworth Scientific, LondonGoogle Scholar
  47. 47.
    Rabezkii M.G., Bazaev A.R., Abdulagatov I.M., Magee J.W., and Bazaev E.A. (2001). J. Chem. Eng. Data 46:1610CrossRefGoogle Scholar
  48. 48.
    Bazaev A.R., Abdulagatov I.M., Magee J.W., Bazaev E.A., and Ramazanova A.E. (2004). Int. J. Thermophys 25:805CrossRefGoogle Scholar
  49. 49.
    Urusova M.A., and Valyashko V.M. (2001). Russ J. Inorg. Chem 46:770Google Scholar
  50. 50.
    Urusova M.A., and Valyashko V.M. (2001). Russ. J. Inorg. Chem. 46:777Google Scholar
  51. 51.
    Stretenskaya N.G., Sadus R.J., and Franck E.U. (1995). J. Phys. Chem 99:4273CrossRefGoogle Scholar
  52. 52.
    Shmonov V.M., Sadus R.J., and Franck E.U. (1993). J. Phys. Chem. 97:9054CrossRefGoogle Scholar
  53. 53.
    Mather A.E., Sadus R.J., and Franck E.U. (1993). J. Chem. Thermodyn. 25:771CrossRefGoogle Scholar
  54. 54.
    Lemmon E.W., and Span R., J. Chem. Eng. Data (in press).Google Scholar
  55. 55.
    Span R., and Wagner W. (1996). J. Phys. Chem. Ref. Data 25:1509ADSGoogle Scholar
  56. 56.
    Abdulagatov A.I., Stepanov G.V., and Abdulagatov I.M., submitted to Russ. J. High Temp.Google Scholar
  57. 57.
    Rainwater J.C. (1989). Int. J. Thermophys 10:357CrossRefGoogle Scholar
  58. 58.
    Anisimov M.A. (1991). Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach, PhiladelphiaGoogle Scholar
  59. 59.
    Anisimov M.A., Gorodezkii E.E., Kulikov V.D., and Sengers J.V. (1995). Phys. Rev. E 51:1199CrossRefADSGoogle Scholar
  60. 60.
    Anisimov M.A., Gorodezkii E.E., Kulikov V.D., Povopdyrev A.A., and Sengers J.V. (1995). Physica A 220:277CrossRefADSGoogle Scholar
  61. 61.
    Anisimov M.A., and Sengers J.V., in Equations of State for Fluids and Fluids Mixtures, J. V. Sengers, R. F. Kayser, Peters C.J., and White H.J., eds. (Elsevier, Amsterdam, 2000), p. 381.Google Scholar
  62. 62.
    Fisher M.E. (1968). Phys. Rev. B 176:257CrossRefADSGoogle Scholar
  63. 63.
    Abdulkadirova Kh.S., Wyczalkowska A., Anisimov M.A., and Sengers J.V. (2002). J. Chem. Phys. 116:4597CrossRefADSGoogle Scholar
  64. 64.
    Albright P.C., Edwards T.J., Chen Z.Y., and Sengers J.V. (1987). J Chem Phys 87:1717CrossRefADSGoogle Scholar
  65. 65.
    Krichevskii I.R. (1967). Russ. J. Phys. Chem 41:1332Google Scholar
  66. 66.
    Levelt Sengers J.M.H., Morrison G., Nielson G., Chang R.F., and Everhart C.M. (1986). Int. J. Thermophys. 7:231CrossRefGoogle Scholar
  67. 67.
    J. M. H. Levelt Sengers, in Supercritical Fluid Technology. Ely J.F., and Bruno T.J., eds. (CRC Press, Boca Raton, Florida, 1991), p. 1.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. G. Polikhronidi
    • 1
  • R. G. Batyrova
    • 1
  • I. M. Abdulagatov
    • 1
    • 2
  • G. V. Stepanov
    • 1
  1. 1.Institute of Physics of the Dagestan Scientific Center of the Russian Academy of SciencesMakhachkalaRussia
  2. 2.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyBoulderU.S.A

Personalised recommendations