Advertisement

International Journal of Thermophysics

, Volume 26, Issue 4, pp 1181–1192 | Cite as

Electrochemical Determination of Oxidic Melt Diffusion Coefficients

  • K. Frolov
  • C. Journeau
  • P. Piluso
  • M. Duclot
Article

Abstract

The chemical diffusion coefficient of electroactive species such as Fe3+ and Ce4+ in silicate melts have been measured using an electrochemical technique: square wave voltametry. The experiments are conducted in an induction furnace in which three electrodes (made of platinum or iridium) are inserted in the crucible containing the melt. The technique has been improved to reduce the uncertainties due to the presence of a meniscus on the electrodes. Experimental results have been obtained at temperatures up to 1560 °C. The technique has proven its ability to analyze melts containing several electroactive species. These experimental results are compared to data from the literature.

Keywords

chemical diffusion high-temperature electrochemistry silicate melts square wave voltametry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Chakraborthy, in Structures, Dynamics and Properties of Silicate Melts, J. F. Stebbins, P. F. McMillans, and D. B. Dingwell, eds. (Mineralogical Soc. Am., Washington, D.C., 1995), pp. 411–503.Google Scholar
  2. Prinzhofer, A., Allègre, C. J. 1985Earth Planet. Sci. Lett.74251CrossRefGoogle Scholar
  3. Rüssel, C., Kämpfer, K. 1998Glastech. Ber. Glass716Google Scholar
  4. Seiler, J. M., Froment, K. 2000Multiphase Sci. Technol.12117Google Scholar
  5. C. Journeau, C. Jégou, J. Monerris, P. Piluso, K. Frolov, Yu. B. Petrov, and R. Rybka, in Proc. 10th Int. Top. Mtg. Nucl. React. Thermalhydraulics (NURETH-10, Seoul, 2003), Paper G00301.Google Scholar
  6. Kubiček, P., Pepřica, T. 1983Int. Met. Rev.28131Google Scholar
  7. Tyrrell, H. J. V., Harris, K. R. 1984Diffusion in LiquidsButterworthsLondonGoogle Scholar
  8. J. F. Stebbins, in Structures, Dynamics and Properties of Silicate Melts, J. F. Stebbins, P. F. McMillans, and D. B. Dingwell, eds. (Mineralogical Soc. Am., Washington, D.C., 1995), pp. 191–246.Google Scholar
  9. A.J. Bard, L.R. Faulkner Electrochemical Methods.Fundamentals and Applications (Wiley, New York, 2001).Google Scholar
  10. Osteryoung, J. G., Osteryoung, R. A. 1985Anal. Chem.57101CrossRefGoogle Scholar
  11. Montel, C., Rüssel, C., Freude, E. 1988Glastech.Ber.– Glass6159Google Scholar
  12. Piluso, P., Monerris, J., Journeau, C., Cognet, G. 2002Int. J. Thermophys.231229CrossRefGoogle Scholar
  13. Rüssel, C. 1991J. Non-Crystal. Solids134169CrossRefGoogle Scholar
  14. K. Frolov, Diffusion Chimique á l’état liquide dans des bains silicates. Applications aux accidents graves de réacteurs nucléaires (Ph. D. Thesis, Université Joseph Fourier, Grenoble, 2004).Google Scholar
  15. Takahashi, K., Miura, Y. 1986J. Non-Crystal. Solids8011CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.CEA Cadarache, DEN/DTN/STRISevere Accident Mastering Experimental LaboratoryCedexFrance
  2. 2.Kurchatov InstituteNuclear Safety InstituteMoscowRussia
  3. 3.LEPMI–ENSEEGUMR 5631 CNRS, INPG, UJFSaint Martin d′HèresFrance

Personalised recommendations