Advertisement

International Journal of Thermophysics

, Volume 26, Issue 2, pp 309–324 | Cite as

The Ratio D int /D between the Coefficients for the Diffusion of Internal Energy and of Self Diffusion in Thermal Conductivity Data Correlations for Gases of Linear Molecules

  • E. Vogel
  • E. Bich
  • S. Bock
Article
  • 36 Downloads

Highly consistent sets of generalized cross sections are used to judge critically correlations of the thermal conductivity in the limit of zero density for nitrogen, carbon monoxide, and carbon dioxide. The correlations were developed by Millat, Vesovic, and Wakeham some years ago using restricted experimental information in order to deduce a set of generalized cross sections as consistent as possible for the extrapolation beyond the temperature range of the primary experimental data. Recently, the generalized cross sections needed have been evaluated by means of classical trajectory calculations for rigid rotors on the basis of accurate anisotropic ab initio potential energy hypersurfaces including a new improved way to take into account the vibrational degrees of freedom. It is shown that the ratio between the coefficients of internal energy and of self diffusion Dint /D was not appropriately chosen and that this effect was extensively compensated in a fortuitous way in the course of the development of the data correlations by a likewise unsuitable choice of the ratio A* between the effective cross sections of viscosity and self-diffusion.

Keywords

carbon monoxide carbon dioxide data correlation diffusion coefficient of internal energy nitrogen thermal conductivity. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E., Kuščer, I. 1990Nonequilibrium Phenomena in Polyatomic Gases, Vols 1 and 2Oxford ScienceOxford.1991Google Scholar
  2. 2.
    Maitland, GC., Rigby, M., Smith, EB., Wakeham, WA. 1978Intermolecular Forces. Their Origin and DeterminationClarendon PressOxford.Google Scholar
  3. 3.
    Heck, E.L., Dickinson, AS. 1994Mol Phys.811325Google Scholar
  4. 4.
    Heck, EL., Dickinson, AS., Vesovic, V. 1994Mol Phys.83907932Google Scholar
  5. 5.
    HeckE.L. Dickinson, AS. 1995Physica A217107Google Scholar
  6. 6.
    Avoird, A., Wormer, P.E.S., Jansen, A.P.J. 1986J. Chem. Phys.841629CrossRefGoogle Scholar
  7. 7.
    Pol, A., Avoird, A., Wormer, P.E.S. 1990J. Chem. Phys.927498CrossRefGoogle Scholar
  8. 8.
    Bich, E., Bock, S., Vogel, E. 2002Physica.31159Google Scholar
  9. 9.
    Bock, S., Bich, E., Vogel, E., Dickinson, AS., Vesovic, V. 2002J. Chem. Phys.1172151CrossRefGoogle Scholar
  10. 10.
    Bock, S., Bich, E., Vogel, E., Dickinson, A.S., Vesovic, V. 2004J. Chem. Phys.1207987CrossRefPubMedGoogle Scholar
  11. 11.
    Steinebrunner, G., Dyson, AJ., Kirchner, B., Huber, H. 1998J. Chem. Phys.1093153CrossRefGoogle Scholar
  12. 12.
    Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, SA., Williams, HL., Rice, BM. 1999J. Chem. Phys.1103785CrossRefGoogle Scholar
  13. 13.
    Bock, S., Bich, E., Vogel, E. 2000Chem. Phys.257147CrossRefGoogle Scholar
  14. 14.
    Millat, J., Wakeham, WA. 1989J. Phys. Chem. Ref. Data.18565Google Scholar
  15. 15.
    Millat, J., Mustafa, M., Ross, M., Wakeham, WA., Zalaf, M. 1987Physica.145A461Google Scholar
  16. 16.
    Vesovic, V., Wakeham, WA., Olchowy, GA., Sengers, JV., Watson, J.T.R., Millat, J. 1990J. Phys. Chem. Ref. Data.19763Google Scholar
  17. 17.
    Millat J., Vesovic V., and Wakeham WA., in Transport Properties of Fluids, Millat J., Dymond JH., and C. A. Nieto de Castro, eds. (Cambridge Univ. Press, Cambridge,1996), Chap. 4.Google Scholar
  18. 18.
    Maitland, G.C., Mustafa, M., Wakeham, WA. 1983J. Chem. Soc. Faraday Trans.21425Google Scholar
  19. 19.
    Kagan, Y., Afanasev, AM. 1962Soviet Phys. J. Exper. Theor. Phys. (Engl. transl.)141096Google Scholar
  20. 20.
    Viehland, LA., Mason, EA., Sandler, SI. 1978J. Chem. Phys.685277CrossRefGoogle Scholar
  21. 21.
    Millat, J, Plantikow, A., Mathes, D., Nimz, H. 1988Z. Phys. Chem. Leipzig.269865Google Scholar
  22. 22.
    Brau, C.A., Jonkman, MR. 1970J. Chem. Phys.52477CrossRefGoogle Scholar
  23. 23.
    Mason, E.A., Monchick, L. 1962J. Chem. Phys.361622CrossRefGoogle Scholar
  24. 24.
    Monchick, L., Pereira, A.N.G., Mason, EA. 1965J. Chem. Phys.423241CrossRefGoogle Scholar
  25. 25.
    Moraal, H., Snider, RF. 1971Chem Phys Lett.9401CrossRefGoogle Scholar
  26. 26.
    Snider, RF. 1974Physica.78387419CrossRefGoogle Scholar
  27. 27.
    Monchick, L., Mason, EA. 1961J. Chem. Phys.3516761697CrossRefGoogle Scholar
  28. 28.
    Vesovic, V., Wakeham, WA. 1992Int. Rev. Phys Chem.11161194Google Scholar
  29. 29.
    Wakeham, W.A., Vesovic, V. 1992The Status and Future Developments in the Study of Transport PropertiesWakeham, WA.Dickinson, AS.McCourt, F. R. W.Vesovic, V. eds. NATO ASI Series CKluwer AcademicDordrecht2955Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Fachbereich ChemieUniversität RostockRostockGermany

Personalised recommendations