Skip to main content
Log in

The Ratio D int /D between the Coefficients for the Diffusion of Internal Energy and of Self Diffusion in Thermal Conductivity Data Correlations for Gases of Linear Molecules

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Highly consistent sets of generalized cross sections are used to judge critically correlations of the thermal conductivity in the limit of zero density for nitrogen, carbon monoxide, and carbon dioxide. The correlations were developed by Millat, Vesovic, and Wakeham some years ago using restricted experimental information in order to deduce a set of generalized cross sections as consistent as possible for the extrapolation beyond the temperature range of the primary experimental data. Recently, the generalized cross sections needed have been evaluated by means of classical trajectory calculations for rigid rotors on the basis of accurate anisotropic ab initio potential energy hypersurfaces including a new improved way to take into account the vibrational degrees of freedom. It is shown that the ratio between the coefficients of internal energy and of self diffusion Dint /D was not appropriately chosen and that this effect was extensively compensated in a fortuitous way in the course of the development of the data correlations by a likewise unsuitable choice of the ratio A* between the effective cross sections of viscosity and self-diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R.W. McCourt J.J.M. Beenakker W.E. Köhler I. Kuščer (1990) Nonequilibrium Phenomena in Polyatomic Gases, Vols 1 and 2 Oxford Science Oxford. 1991

    Google Scholar 

  2. GC. Maitland M. Rigby EB. Smith WA. Wakeham (1978) Intermolecular Forces. Their Origin and Determination Clarendon Press Oxford.

    Google Scholar 

  3. E.L. Heck AS. Dickinson (1994) Mol Phys. 81 1325 Occurrence Handle1:CAS:528:DyaK2cXjtlWkt7w%3D

    CAS  Google Scholar 

  4. EL. Heck AS. Dickinson V. Vesovic (1994) Mol Phys. 83 907–932 Occurrence Handle1:CAS:528:DyaK2MXivV2ksrY%3D

    CAS  Google Scholar 

  5. AS. HeckE.L. Dickinson (1995) Physica A 217 107

    Google Scholar 

  6. A. Avoird Particlevan der P.E.S. Wormer A.P.J. Jansen (1986) J. Chem. Phys. 84 1629 Occurrence Handle10.1063/1.450457

    Article  Google Scholar 

  7. A. Pol Particlevan der A. Avoird Particlevan der P.E.S. Wormer (1990) J. Chem. Phys. 92 7498 Occurrence Handle10.1063/1.458185

    Article  Google Scholar 

  8. E. Bich S. Bock E. Vogel (2002) Physica. 311 59 Occurrence Handle1:CAS:528:DC%2BD38XlsVekurY%3D

    CAS  Google Scholar 

  9. S. Bock E. Bich E. Vogel AS. Dickinson V. Vesovic (2002) J. Chem. Phys. 117 2151 Occurrence Handle10.1063/1.1486438 Occurrence Handle1:CAS:528:DC%2BD38XlsVent70%3D

    Article  CAS  Google Scholar 

  10. S. Bock E. Bich E. Vogel A.S. Dickinson V. Vesovic (2004) J. Chem. Phys. 120 7987 Occurrence Handle10.1063/1.1687312 Occurrence Handle1:CAS:528:DC%2BD2cXjtFyls7c%3D Occurrence Handle15267716

    Article  CAS  PubMed  Google Scholar 

  11. G. Steinebrunner AJ. Dyson B. Kirchner H. Huber (1998) J. Chem. Phys. 109 3153 Occurrence Handle10.1063/1.476922 Occurrence Handle1:CAS:528:DyaK1cXkvVOgurY%3D

    Article  CAS  Google Scholar 

  12. R. Bukowski J. Sadlej B. Jeziorski P. Jankowski K. Szalewicz SA. Kucharski HL. Williams BM. Rice (1999) J. Chem. Phys. 110 3785 Occurrence Handle10.1063/1.479108 Occurrence Handle1:CAS:528:DyaK1MXosVWluw%3D%3D

    Article  CAS  Google Scholar 

  13. S. Bock E. Bich E. Vogel (2000) Chem. Phys. 257 147 Occurrence Handle10.1016/S0301-0104(00)00161-0 Occurrence Handle1:CAS:528:DC%2BD3cXkvFWqsbY%3D

    Article  CAS  Google Scholar 

  14. J. Millat WA. Wakeham (1989) J. Phys. Chem. Ref. Data. 18 565 Occurrence Handle1:CAS:528:DyaL1MXltVentr8%3D

    CAS  Google Scholar 

  15. J. Millat M. Mustafa M. Ross WA. Wakeham M. Zalaf (1987) Physica. 145A 461 Occurrence Handle1:CAS:528:DyaL1cXislKmuw%3D%3D

    CAS  Google Scholar 

  16. V. Vesovic WA. Wakeham GA. Olchowy JV. Sengers J.T.R. Watson J. Millat (1990) J. Phys. Chem. Ref. Data. 19 763 Occurrence Handle1:CAS:528:DyaK3cXltVCgs7k%3D

    CAS  Google Scholar 

  17. Millat J., Vesovic V., and Wakeham WA., in Transport Properties of Fluids, Millat J., Dymond JH., and C. A. Nieto de Castro, eds. (Cambridge Univ. Press, Cambridge,1996), Chap. 4.

  18. G.C. Maitland M. Mustafa WA. Wakeham (1983) J. Chem. Soc. Faraday Trans. 2 IssueID79 1425

    Google Scholar 

  19. Y. Kagan AM. Afanasev (1962) Soviet Phys. J. Exper. Theor. Phys. (Engl. transl.) 14 1096

    Google Scholar 

  20. LA. Viehland EA. Mason SI. Sandler (1978) J. Chem. Phys. 68 5277 Occurrence Handle10.1063/1.435594 Occurrence Handle1:CAS:528:DyaE1cXkvVWjtb4%3D

    Article  CAS  Google Scholar 

  21. J Millat A. Plantikow D. Mathes H. Nimz (1988) Z. Phys. Chem. Leipzig. 269 865 Occurrence Handle1:CAS:528:DyaL1MXhtlyjsQ%3D%3D

    CAS  Google Scholar 

  22. C.A. Brau MR. Jonkman (1970) J. Chem. Phys. 52 477 Occurrence Handle10.1063/1.1673010 Occurrence Handle1:CAS:528:DyaE3cXntVKktA%3D%3D

    Article  CAS  Google Scholar 

  23. E.A. Mason L. Monchick (1962) J. Chem. Phys. 36 1622 Occurrence Handle10.1063/1.1732790 Occurrence Handle1:CAS:528:DyaF38Xktl2lsrY%3D

    Article  CAS  Google Scholar 

  24. L. Monchick A.N.G. Pereira EA. Mason (1965) J. Chem. Phys. 42 3241 Occurrence Handle10.1063/1.1696406 Occurrence Handle1:CAS:528:DyaF2MXktVSgsLw%3D

    Article  CAS  Google Scholar 

  25. H. Moraal RF. Snider (1971) Chem Phys Lett. 9 401 Occurrence Handle10.1016/0009-2614(71)80253-1 Occurrence Handle1:CAS:528:DyaE3MXks1Olsro%3D

    Article  CAS  Google Scholar 

  26. RF. Snider (1974) Physica. 78 387–419 Occurrence Handle10.1016/0031-8914(74)90371-1

    Article  Google Scholar 

  27. L. Monchick EA. Mason (1961) J. Chem. Phys. 35 1676–1697 Occurrence Handle10.1063/1.1732130 Occurrence Handle1:CAS:528:DyaF38XmsValsw%3D%3D

    Article  CAS  Google Scholar 

  28. V. Vesovic WA. Wakeham (1992) Int. Rev. Phys Chem. 11 161–194 Occurrence Handle1:CAS:528:DyaK38XkslKltLo%3D

    CAS  Google Scholar 

  29. W.A. Wakeham V. Vesovic (1992) The Status and Future Developments in the Study of Transport Properties WA. Wakeham AS. Dickinson F. R. W. McCourt V. Vesovic (Eds) NATO ASI Series C Kluwer Academic Dordrecht 29–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vogel.

Additional information

Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, E., Bich, E. & Bock, S. The Ratio D int /D between the Coefficients for the Diffusion of Internal Energy and of Self Diffusion in Thermal Conductivity Data Correlations for Gases of Linear Molecules. Int J Thermophys 26, 309–324 (2005). https://doi.org/10.1007/s10765-005-4501-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-4501-1

Keywords

Navigation