Skip to main content
Log in

Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1–35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. M. Heyes (1994) J. Phys.: Condens. Matter 6 6409 Occurrence Handle1994JPCM....6.6409H

    ADS  Google Scholar 

  • R. K. Sharma K. Tankeswar K. N. Pathak (1995) J. Phys. Condens. Matter. 7 537 Occurrence Handle1995JPCM....7..537S

    ADS  Google Scholar 

  • R. Vogelsang C. Hoheisel G. Ciccotti (1987) J. Chem. Phys. 86 6371 Occurrence Handle1987JChPh..86.6371V

    ADS  Google Scholar 

  • R. Vogelsang G. Hoheisel M. Luckas (1988) Mol. Phys. 64 1203 Occurrence Handle1988MolPh..64.1203V

    ADS  Google Scholar 

  • F. Muller-Plathe (1997) J. Chem. Phys. 106 6082 Occurrence Handle1997JChPh.106.6082M

    ADS  Google Scholar 

  • T. Ikeshoji B. Hafskjold (1994) Mol. Phys. 81 251 Occurrence Handle1994MolPh..81..251I

    ADS  Google Scholar 

  • G. V. Paolini G. Ciccotti C. Massobrio (1986) Phys. Rev. A. 34 1355 Occurrence Handle1986PhRvA..34.1355P

    ADS  Google Scholar 

  • D. J. Evans (1982) Phys. Lett. A. 91 457 Occurrence Handle1982PhLA...91..457E

    ADS  Google Scholar 

  • M. J. Gillian (1983) J. Phys. C. 16 869 Occurrence Handle1983JPhC...16..869G

    ADS  Google Scholar 

  • D. M. Heyes (1984) J. Chem. Soc. Faraday Trans. 80 1363

    Google Scholar 

  • D. Bedrov G. D. Smith (2000) J. Chem. Phys. 113 8080 Occurrence Handle2000JChPh.113.8080B

    ADS  Google Scholar 

  • R. B. Bird W. E. Stewart E. N. Lightfoot (1960) Transport Phenomena John Wiley New York

    Google Scholar 

  • B. E. Poling J. M. Prausnitz J. P. O’Connell (2001) The Properties of Gases and Liquids McGraw-Hill New York

    Google Scholar 

  • J. Lawson J. Erjavec (2001) Modern Statistics for Engineering and Quality Improvement Duxbury Pacific Grove, CA

    Google Scholar 

  • H. J. M. Hanley R. D. McCarty W. M. Haynes (1974) J. Phys. Chem. Ref. Data. 3 979 Occurrence Handle10.1063/1.3253152

    Article  Google Scholar 

  • A. Michels J. V. Sengers L. J. M. De Klundert (1963) Physica 29 149 Occurrence Handle10.1016/S0031-8914(63)80201-3

    Article  Google Scholar 

  • B. Le Neindre (1972) Int. J. Heat Mass Transfer 15 1

    Google Scholar 

  • C. Hoheisel (1990) Comput. Phys. Rep. 12 29 Occurrence Handle1990CoPhR..12...29H

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Rowley.

Additional information

Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22--27, 2003, Boulder, Colorado, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulse, R.J., Rowley, R.L. & Wilding, W.V. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids. Int J Thermophys 26, 1–12 (2005). https://doi.org/10.1007/s10765-005-2349-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-2349-z

Keywords

Navigation