Skip to main content

Advertisement

Log in

Analysis for Microscopic Hyperbolic Two-Step Heat Transfer Problems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

This work analyzes the heat transfer problems in thin metal films using the microscopic hyperbolic two-step model. It is necessary in dealing with such problems to solve a set of the coupled energy equations or an equation containing higher-order mixed derivatives in both time and space. This present numerical scheme eliminates the coupling between energy equations with the Laplace transform technique and leads to a second-order governing differential equation in the transform domain. Afterward, the transformed second-order governing differential equation is discretized by the control volume scheme. To demonstrate the efficiency and accuracy of the present numerical scheme, a comparison between the present numerical results and the analytical solution is made. Theoretical insight into the hyperbolic two-step heat conduction is provided. Results show that the thermal propagation velocity is finite and is independent of the coupling factor and the volumetric heat capacity ratio between electrons and the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

volumetric heat capacity

E :

dimensionless heating source, defined as \(E=\frac{S\tau }{C_{\rm e} T_{\rm r} } \widetilde {E}\)

\(\widetilde {E}\) :

Laplace transform of E

G :

coupling factor

k :

thermal conductivity

ℓ:

distance between neighboring nodes

N :

parameter, defined as \(N=\frac{G\tau }{C_{\rm e}}\)

Q :

dimensionless heat flux, defined as \(Q=\frac{q}{T_{\rm r} \sqrt {kC_{\rm e}/\tau}}\)

\(\widetilde {Q}\) :

Laplace transform of Q

q :

heat flux

R C :

parameter, defined as \(R_{\rm C} =\frac{C_{\rm l}}{C_{\rm e}}\)

S :

heating source

s :

Laplace transform parameter

T :

temperature

T 0 :

initial temperature

T r :

reference temperature

t :

time

V :

propagation speed of thermal signal, defined as \(V=\sqrt {k \mathord C_{\rm e} \tau } \)

x :

space coordinate

Greek Symbols:

 

β:

parameter, defined in Eq. (9)

η:

dimensionless space coordinate, defined as \(\eta\, =\,\frac{x}{\sqrt {k\tau /C_{\rm e}} }\)

θ:

dimensionless temperature, defined as \(\theta =\frac{T-T_{\rm 0}}{T_{\rm r} }\)

\(\widetilde {\theta }\) :

Laplace transform of θ

ξ:

dimensionless time, defined as \(\xi =\frac{t}{\tau }\)

τ:

relaxation time

Subscripts:

 

e:

electron

i :

node number

l:

lattice

References

  1. Fujimoto J.G., Liu J.M., and Ippen E.P. (1984). Phys. Rev 53:416

    Google Scholar 

  2. Brorson S.D., Fujimoto J.G., and Ippen E.P. (1987). Phys. Rev. Lett 59:1962

    Article  ADS  Google Scholar 

  3. Elsayed-Ali H.E. (1991). Phys. Rev. B43:4488

    Article  ADS  Google Scholar 

  4. Kaganov M.I., Lifshitz I.M., and Tanatarov L.V. (1957). Sov Phys JETP 4:173

    MATH  Google Scholar 

  5. Anisimov S.I., Kapeliovich B.L., and Perel’man T.L. (1974). Sov. Phys. JETP 39:375

    ADS  Google Scholar 

  6. Elsayed-Ali H.E., Norris T.B., Pessot M.A., and Mourou G.A. (1987). Phys. Rev. Lett 58:1212

    Article  ADS  Google Scholar 

  7. Corkum P.B., Brunel F., and Sherman N.K. (1987). Phys. Rev. Lett. 61:2886

    Article  ADS  Google Scholar 

  8. Qiu T.Q., and Tien C.L. (1992). Int. J. Heat Mass Transfer 35:719

    Article  ADS  Google Scholar 

  9. Qiu T.Q., and Tien C.L. (1994). Int. J. Heat Mass Transfer 37:2789

    Article  Google Scholar 

  10. Kiwan S. and Al-Nimr M.A. (2000). Jpn. J. Appl. Phys 39:4245

    Article  ADS  Google Scholar 

  11. Al-Nimr M.A., Hader M., and Naji M. (2003). Int. J. Heat Mass Transfer 46:333

    Article  MATH  Google Scholar 

  12. Qiu T.Q., and Tien C.L. (1993). J. Heat Transfer 115:835

    Article  Google Scholar 

  13. Tzou D.Y. (1995). Int. J. Heat Mass Transfer 38:3231

    Article  Google Scholar 

  14. Al-Nimr M.A., and Arpaci V.S. (2000). Int. J. Heat Mass Transfer 43:2021

    Article  MATH  Google Scholar 

  15. Al-Nimr M.A.,, Haddad O.M., and Arpaci V.S. (1999). Heat Mass Transfer 35:459

    Article  ADS  Google Scholar 

  16. Naji M., Al-Nimr M.A.,, and Hader M. (2003). Int J Thermophys. 24:545

    Article  Google Scholar 

  17. Al-Nimr M.A., and Alkam M.K. (2003). Int. J. Thermophys. 24:577

    Article  Google Scholar 

  18. Tzou D.Y. (1995). ASME J. Heat Transfer 117:8

    Article  Google Scholar 

  19. Tzou D.Y. (1997). Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor & Francis, Washington, DC, Chap. 10.

    Google Scholar 

  20. Tzou D.Y. (2003). ASME J. Dynamic Systems, Measurement, and Control 125:563

    Article  Google Scholar 

  21. Shih T.M. (1984). Numerical Heat Transfer. Hemisphere, New York, p. 55.

    MATH  Google Scholar 

  22. Chen H.T., and Liu K.C. (2003). Int. J. Heat Mass Transfer 46:2809

    Article  MATH  Google Scholar 

  23. Chen H.T., and Liu K.C. (2003). Comput. Phys. Commun 150:31

    Article  ADS  Google Scholar 

  24. Chen H.T., and Liu K.C. (2003). Int. J. Numer. Methods Eng. 57:637

    Article  MATH  Google Scholar 

  25. Honig G., and Hirdes U. (1984). J. Comput. Appl. Math. 10:113

    Article  MATH  MathSciNet  Google Scholar 

  26. Hays-Stang K.J., Haji-Sheikh A. (1999). Int. J. Heat Mass Transfer 42:455

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Chi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, KC. Analysis for Microscopic Hyperbolic Two-Step Heat Transfer Problems. Int J Thermophys 27, 596–613 (2006). https://doi.org/10.1007/s10765-005-0006-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-0006-1

Keywords

Navigation