Advertisement

International Journal of Thermophysics

, Volume 27, Issue 2, pp 581–595 | Cite as

Thermal Conductivity of Small Nickel Particles

  • S. P. Yuan
  • P. X. Jiang
Article

Abstract

The thermal conductivity of nanoscale nickel particles due to phonon heat transfer is extrapolated from thin film results calculated using nonequilibrium molecular dynamics (NEMD). The electronic contribution to the thermal conductivity is deduced from the electrical conductivity using the Wiedemann–Franz law. Based on the relaxation time approximation, the electrical conductivity is calculated with the Kubo linear-response formalism. At the average temperature of T=300 K, which is lower than the Debye temperature ΘD=450 K, the results show that in a particle size range of 1.408–10.56 nm, the calculated thermal conductivity decreases almost linearly with decreasing particle size, exhibiting a remarkable reduction compared with the bulk value. The phonon mean free path is estimated, and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

Keywords

nanoscale nickel particles nonequilibrium molecular dynamics (NEMD) thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonacic-Koutecky V., Fantucci P., Koutecky J. (1991). Chem. Rev. 91:1035CrossRefGoogle Scholar
  2. 2.
    Kurganov V.A., Yu, Zeigarnik A., Maslakova I.V., Ivanov F.P., Martynov S.B. (2000). High Temp. 38:926CrossRefGoogle Scholar
  3. 3.
    Billas I.M.L., Becker J.A., Chatelain A., de Heer W.A. (1994). Science 265:1682CrossRefADSGoogle Scholar
  4. 4.
    Aspel S.E., Emmert J.W., Deng J., Bloomfield L.A. (1996). Phys. Rev. Lett. 76:1441CrossRefPubMedADSGoogle Scholar
  5. 5.
    Wu Z.L., Kuo P.K., Wei L.H., Gu S.L., Thomas R.L. (1993). Thin Solid Films 236:191CrossRefADSGoogle Scholar
  6. 6.
    Myers H.P. (1990). Introductory Solid State Physics. Taylor and Francis, LondonGoogle Scholar
  7. 7.
    Kumar S., Vradis G.C. (1994). J. Heat Transfer ASME 116:28CrossRefGoogle Scholar
  8. 8.
    Chantrenne P., Raynaud M., Baillis D., Barrat J.L. (2003). Microscale Thermophysical Eng. 7:117CrossRefGoogle Scholar
  9. 9.
    Allen M.P., Tildesley D.J. (1987). Computer Simulation of Liquids. Oxford University Press, New YorkMATHGoogle Scholar
  10. 10.
    Frenkel D., Berend S. (1996). Understanding Molecular Simulation. Academic Press, San DiegoMATHGoogle Scholar
  11. 11.
    Papadia S., Piveteau B., Spanjaard D. (1996). Phys. Rev. B 54:14720CrossRefADSGoogle Scholar
  12. 12.
    Harrison W.A. (1966). Pseudopotentials in the Theory of Metals. Benjamin, New YorkGoogle Scholar
  13. 13.
    Erkoç Ş., Güneş B., Güneş P. (2000). Int. J. Mod. Phys. C 11:1013CrossRefADSGoogle Scholar
  14. 14.
    Daw M.S., Baskes M.I. (1984). Phys. Rev. B 29:6443CrossRefADSGoogle Scholar
  15. 15.
    Johnson R.A. (1988). Phys. Rev. B 37:3924CrossRefADSGoogle Scholar
  16. 16.
    Mei J., Davenport J.W., Fernando G.W. (1991). Phys. Rev. B 43:4653CrossRefADSGoogle Scholar
  17. 17.
    Cai J., Ye Y.Y. (1996). Phys. Rev. B 54:8398CrossRefADSGoogle Scholar
  18. 18.
    Pohlong S.S., Ram P.N. (1998). J. Mater. Res. 13:1919CrossRefADSGoogle Scholar
  19. 19.
    Sadigh B., Grimvall G. (1996). Phys. Rev. B 54:15742CrossRefADSGoogle Scholar
  20. 20.
    Wang J.Z., Chen M., Guo Z.Y. (2002). Chin. Phys. Lett. 19:324CrossRefADSGoogle Scholar
  21. 21.
    Camblong H.E., Levy P.M. (1999). Phys. Rev. B 60:15782CrossRefADSGoogle Scholar
  22. 22.
    Blass C., Weinberger P., Szunyogh L., Levy P.M., Sommers C.B. (1999). Phys. Rev. B 60:492CrossRefADSGoogle Scholar
  23. 23.
    Wood D.M., Ashcroft N.W. (1982). Phys. Rev. B 25:6255CrossRefADSGoogle Scholar
  24. 24.
    Zhang X.G., Butler W.H. (1995). Phys. Rev. B 51:10085CrossRefADSGoogle Scholar
  25. 25.
    Bethe H., Salpeter E. (1957). Quantum Mechanics of One- and Two-Electron Atoms. Springer, BerlinMATHGoogle Scholar
  26. 26.
    Bender C.M., Orzag S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New YorkMATHGoogle Scholar
  27. 27.
    Kittel C. (1996). Introduction to Solid State Physics. Wiley, New YorkGoogle Scholar
  28. 28.
    Ashcroft N.W., Mermin N.D. (1976). Solid State Physics. Harcourt College Publishers, Fort Worth, TexasGoogle Scholar
  29. 29.
    Anderson R.J. (1990). J Appl Phys. 67:6914CrossRefADSGoogle Scholar
  30. 30.
    Tien C.L., Armaly B.F., Jagannathan P.S., in Thermal Conductivity (Plenum Press, New York, 1969), pp. 13–19.Google Scholar
  31. 31.
    Tellier C.R., Tosser A.J. (1982). Size Effects of Thin Films. Elsevier, New YorkGoogle Scholar
  32. 32.
    Mott N.F., Jones H. (1958). Theory of Properties of Metals and Alloys. Dover, New YorkGoogle Scholar
  33. 33.
    Kreibig U., Fragstein C.V. (1969). Z. Phys. 224:307CrossRefADSGoogle Scholar
  34. 34.
    Shvets V.T., Savenko S.V., Datsko S.V. (2004). Condens. Matter Phys. 7:275Google Scholar
  35. 35.
    Swartz E.T., Pohl R.O. (1989). Rev. Modern Phys. 61:605CrossRefADSGoogle Scholar
  36. 36.
    S. P. Yuan and P. X. Jiang, in Proc. 7 th Asian Thermophys. Props. Conf. (Hefei and Huangshan, Anhui, China, August 23–29, 2004).Google Scholar
  37. 37.
    Yuan S.P., Jiang P.X. (2005). Prog. Natural Sci. 15:922CrossRefGoogle Scholar
  38. 38.
    Majumdar A. (1993). J. Heat Transfer ASME 115:7CrossRefGoogle Scholar
  39. 39.
    Chen G., Tien C.L. (1993). AIAA J. Thermophys. Heat Transfer 7:311CrossRefADSGoogle Scholar
  40. 40.
    Ercolessi F. (1997). A Molecular Dynamics Primer. International School for Advanced Studies (SISSA-ISAS), Trieste, Italy, Spring College in Computational Physics, ICTPGoogle Scholar
  41. 41.
    Ziman J.M. (1960). Electrons and Phonons. Oxford University Press, LondonMATHGoogle Scholar
  42. 42.
    Touloukian Y.S. (1970). Thermophysical Properties of Matter, Vol.1: Thermal Conductivity of Metallic Materials and Alloys. Plenum Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Key Laboratory for Thermal Science and Power Engineering, Department of Thermal EngineeringTsinghua UniversityBeijingP. R. China

Personalised recommendations