Skip to main content
Log in

Impressive Arboreal Gap-Crossing Behaviors in Wild Bonobos, Pan paniscus

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Most primates are arboreal, and the current context of habitat fragmentation makes gap- and road-crossing behaviors more and more common. Great apes may try to avoid behaviors such as arboreal leaping because given their size such behaviors are risky. Here, we report impressive gap-crossing by wild bonobos (Pan paniscus) in the Democratic Republic of Congo, induced by human disturbance and habitat fragmentation. We quantify the basic mechanics of leaps and arboreal landing performance in two individuals. The bonobos climbed a tree, 15 m high, and performed pronograde leaps between thin flexible branches, to grasp landing branches ca. 4 m further and below their starting point. They reached an instantaneous velocity of about 9 m · s−1. The bonobos used pendular swinging of landing branches to dissipate the kinetic energy built up during falling, requiring a grip force of about 2.5× body weight. Moreover, our results show that bonobos might be able to modulate the drag experienced during falling (up to 20% of body weight) by adjusting their posture. Apparently, bonobos evaluate the structural context to perform the best possible leap and balance the risks against the extra energetic costs involved. Further study of locomotor performance is needed to inform conservation planning, owing to the extent of habitat fragmentation due to human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Blanchard, M. L. (2007). Locomotor behaviour and ecology of three sympatric lemur species in Mantadia National Park. Madagascar: University of Liverpool.

    Google Scholar 

  • Cannon, C. H., & Leighton, M. (1994). Comparative locomotor ecology of gibbons and macaques: Selection of canopy elements for crossing gaps. American Journal of Physical Anthropology, 93(4), 505–524.

    Article  CAS  Google Scholar 

  • Channon, A., Crompton, R., Günther, M., D'Août, K., & Vereecke, E. (2010). The biomechanics of leaping in gibbons. American Journal of Physical Anthropology, 143(3), 403–416.

    Article  CAS  Google Scholar 

  • Channon, A. J., Günther, M. M., Crompton, R. H., D'Août, K., Preuschoft, H., & Vereecke, E. E. (2011). The effect of substrate compliance on the biomechanics of gibbon leaps. Journal of Experimental Biology, 214(4), 687–696.

    Article  Google Scholar 

  • Channon, A. J., Usherwood, J. R., Crompton, R. H., Günther, M. M., & Vereecke, E. E. (2011). The extraordinary athletic performance of leaping gibbons. Biology Letters, 8(1), 46–49.

    Article  Google Scholar 

  • Chappell, J., Phillips, A. C., Van Noordwijk, M. A., Setia, T. M., & Thorpe, S. K. (2015). The ontogeny of gap crossing behaviour in Bornean orangutans (Pongo pygmaeus wurmbii). PLoS One, 10(7).

  • Chatani, K. (2003). Positional behavior of free-ranging Japanese macaques (Macaca fuscata). Primates, 44(1), 13–23.

    Article  Google Scholar 

  • Coolidge, H. J., & Shea, B. T. (1982). External body dimensions of Pan paniscus and Pan troglodytes chimpanzees. Primates, 23(2), 245–251.

    Article  Google Scholar 

  • Das, J., Biswas, J., Bhattacherjee, P. C., & Rao, S. (2009). Canopy bridges: An effective conservation tactic for supporting gibbon populations in forest fragments. In D. Whittaker & S. Lappan (Eds.), The gibbons: New perspectives on small ape socioecology and population biology (pp. 467–475). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.

  • Demes, B., Fleagle, J., & Jungers, W. (1999). Takeoff and landing forces of leaping strepsirhine primates. Journal of Human Evolution, 37(2), 279–292.

    Article  CAS  Google Scholar 

  • Demes, B., Jungers, W. L., Gross, T. S., & Fleagle, J. G. (1995). Kinetics of leaping primates: Influence of substrate orientation and compliance. American Journal of Physical Anthropology, 96(4), 419–429.

    Article  CAS  Google Scholar 

  • Doran, D. M. (1992). The ontogeny of chimpanzee and pygmy chimpanzee locomotor behavior: A case study of paedomorphism and its behavioral correlates. Journal of Human Evolution, 23(2), 139–157.

    Article  Google Scholar 

  • Doran, D. M. (1993). Comparative locomotor behavior of chimpanzees and bonobos: The influence of morphology on locomotion. American Journal of Physical Anthropology, 91(1), 83–98.

    Article  CAS  Google Scholar 

  • Druelle, F., Schoonaert, K., Aerts, P., Nauwelaerts, S., Stevens, J. M., & D'Août, K. (2018). Segmental morphometrics of bonobos (Pan paniscus): Are they really different from chimpanzees (Pan troglodytes)? Journal of Anatomy, 233(6), 843–853.

    Article  CAS  Google Scholar 

  • Dunbar, D. C. (1988). Aerial maneuvers of leaping lemurs: The physics of whole-body rotations while airborne. American Journal of Primatology, 16(4), 291–303.

    Article  Google Scholar 

  • Fan, P., Scott, M. B., Fei, H., & Ma, C. (2013). Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integrative Zoology, 8(4), 356–364.

    Article  Google Scholar 

  • Fleagle, J. G. (1976). Locomotion and posture of the Malayan Siamang and implications for hominoid evolution. Folia Primatologica, 26(4), 245–269.

    Article  CAS  Google Scholar 

  • Fleagle, J. G. (2013). Primate adaptation and evolution (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Fleagle, J. G., & Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. American Journal of Physical Anthropology, 52(3), 301–314.

    Article  Google Scholar 

  • Gebo, D. L. (1992). Locomotor and postural behavior in Alouatta palliata and Cebus capucinus. American Journal of Primatology, 26(4), 277–290.

    Article  Google Scholar 

  • Grosprêtre, S., & Lepers, R. (2016). Performance characteristics of Parkour practitioners: Who are the traceurs? European Journal of Sport Science, 16(5), 526–535.

    Article  Google Scholar 

  • Halsey, L. G., Coward, S. R., & Thorpe, S. K. (2015). Bridging the gap: Parkour athletes provide new insights into locomotion energetics of arboreal apes. Biology Letters, 12(11), 20160608.

    Article  Google Scholar 

  • Hunt, K. D. (2016). Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. Journal of Anatomy, 228(4), 630–685.

    Article  Google Scholar 

  • Hunt, K. D., Cant, J., Gebo, D., Rose, M., Walker, S., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37(4), 363–387.

    Article  Google Scholar 

  • Junker, J., Blake, S., Boesch, C., Campbell, G., du Toit, L., et al (2012). Recent decline in suitable environmental conditions for African great apes. Diversity and Distributions, 18(11), 1077–1091.

    Article  Google Scholar 

  • Lindshield, S. M. (2016). Protecting nonhuman primates in peri-urban environments: A case study of Neotropical monkeys, corridor ecology, and coastal economy in the Caribe Sur of Costa Rica. In M. T. Waller (Ed.), Ethnoprimatology: Primate conservation in the 21st century (pp. 351–369). Cham, Switzerland: Springer International.

    Chapter  Google Scholar 

  • Mittermeier, R. A., & Fleagle, J. G. (1976). The locomotor and postural repertoires of Ateles geoffroyi and Colobus guereza, and a reevaluation of the locomotor category semibrachiation. American Journal of Physical Anthropology, 45(2), 235–255.

    Article  Google Scholar 

  • Narat, V., Pennec, F., Simmen, B., Ngawolo, J. C. B., & Krief, S. (2015). Bonobo habituation in a forest-savanna mosaic habitat: Influence of ape species, habitat type, and sociocultural context. Primates, 56(4), 339–349.

    Article  Google Scholar 

  • O'Neill, M. C., Umberger, B. R., Holowka, N. B., Larson, S. G., & Reiser, P. J. (2017). Chimpanzee super strength and human skeletal muscle evolution. Proceedings of the National Academy of Sciences of the USA, 114(28), 7343–7348.

    Article  CAS  Google Scholar 

  • Pennec, F., Krief, S., Hladik, A., Lubini Ayingweu, C., Bortolamiol, S., et al (2016). Floristic and structural vegetation typology of bonobo habitats in a forest-savanna mosaic (Bolobo Territory, DR Congo). Plant Ecology and Evolution, 149(2), 199–215.

    Article  Google Scholar 

  • Pontzer, H., & Wrangham, R. W. (2004). Climbing and the daily energy cost of locomotion in wild chimpanzees: Implications for hominoid locomotor evolution. Journal of Human Evolution, 46(3), 315–333.

    Article  Google Scholar 

  • Ripley, S. (1967). The leaping of langurs: A problem in the study of locomotor adaptation. American Journal of Physical Anthropology, 26(2), 149–170.

    Article  Google Scholar 

  • Scholz, M. N., D'Août, K., Bobbert, M. F., & Aerts, P. (2006). Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2177–2184.

    Google Scholar 

  • Shea, B. T. (1984). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In R. L. Susman (Ed.), The pygmy chimpanzee: Evolutionary biology and behavior (pp. 89–130). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Susman, R. L., Badrian, N. L., & Badrian, A. J. (1980). Locomotor behavior of Pan paniscus in Zaire. American Journal of Physical Anthropology, 53(1), 69–80.

    Article  Google Scholar 

  • Thorpe, S. K. S., & Crompton, R. H. (2006). Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. American Journal of Physical Anthropology, 131(3), 384–401.

    Article  Google Scholar 

  • Thorpe, S. K. S., Crompton, R. H., & Alexander, R. M. (2007). Orangutans use compliant branches to lower the energetic cost of locomotion. Biology Letters, 3(3), 253–256.

    Article  CAS  Google Scholar 

  • Zihlman, A. L., & Cramer, D. L. (1978). Skeletal differences between pygmy (Pan paniscus) and common chimpanzees (Pan troglodytes). Folia Primatologica, 29(2), 86–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mbou-Mon-Tour staff and especially our field assistants Osa Otsiu Epany and Mozungo Ngofuna. We thank French NGO Bonobo ECO and the Eco-anthropology unit of the CNRS for financial support. We thank the two referees for their constructive and detailed comments on the first version of the manuscript. We are very grateful to the editor-in-chief of the International Journal of Primatology, Joanna M. Setchell, who revised the manuscript and improved the English.

Author information

Authors and Affiliations

Authors

Contributions

VN conceived the initial part of the study and the methodology; VN and JCBN acquired funding and conducted fieldwork; FD and PA analyzed the data; and FD wrote the original draft. PA and VN reviewed the manuscript and JCBN provided editorial advice.

Corresponding author

Correspondence to François Druelle.

Additional information

Handling Editor: Joanna M. Setchell

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druelle, F., Aerts, P., Ngawolo, J.C.B. et al. Impressive Arboreal Gap-Crossing Behaviors in Wild Bonobos, Pan paniscus . Int J Primatol 41, 129–140 (2020). https://doi.org/10.1007/s10764-020-00140-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-020-00140-z

Keywords

Navigation