Impressive Arboreal Gap-Crossing Behaviors in Wild Bonobos, Pan paniscus

Abstract

Most primates are arboreal, and the current context of habitat fragmentation makes gap- and road-crossing behaviors more and more common. Great apes may try to avoid behaviors such as arboreal leaping because given their size such behaviors are risky. Here, we report impressive gap-crossing by wild bonobos (Pan paniscus) in the Democratic Republic of Congo, induced by human disturbance and habitat fragmentation. We quantify the basic mechanics of leaps and arboreal landing performance in two individuals. The bonobos climbed a tree, 15 m high, and performed pronograde leaps between thin flexible branches, to grasp landing branches ca. 4 m further and below their starting point. They reached an instantaneous velocity of about 9 m · s−1. The bonobos used pendular swinging of landing branches to dissipate the kinetic energy built up during falling, requiring a grip force of about 2.5× body weight. Moreover, our results show that bonobos might be able to modulate the drag experienced during falling (up to 20% of body weight) by adjusting their posture. Apparently, bonobos evaluate the structural context to perform the best possible leap and balance the risks against the extra energetic costs involved. Further study of locomotor performance is needed to inform conservation planning, owing to the extent of habitat fragmentation due to human activities.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Blanchard, M. L. (2007). Locomotor behaviour and ecology of three sympatric lemur species in Mantadia National Park. Madagascar: University of Liverpool.

    Google Scholar 

  2. Cannon, C. H., & Leighton, M. (1994). Comparative locomotor ecology of gibbons and macaques: Selection of canopy elements for crossing gaps. American Journal of Physical Anthropology, 93(4), 505–524.

    CAS  Article  Google Scholar 

  3. Channon, A., Crompton, R., Günther, M., D'Août, K., & Vereecke, E. (2010). The biomechanics of leaping in gibbons. American Journal of Physical Anthropology, 143(3), 403–416.

    CAS  Article  Google Scholar 

  4. Channon, A. J., Günther, M. M., Crompton, R. H., D'Août, K., Preuschoft, H., & Vereecke, E. E. (2011). The effect of substrate compliance on the biomechanics of gibbon leaps. Journal of Experimental Biology, 214(4), 687–696.

    Article  Google Scholar 

  5. Channon, A. J., Usherwood, J. R., Crompton, R. H., Günther, M. M., & Vereecke, E. E. (2011). The extraordinary athletic performance of leaping gibbons. Biology Letters, 8(1), 46–49.

    Article  Google Scholar 

  6. Chappell, J., Phillips, A. C., Van Noordwijk, M. A., Setia, T. M., & Thorpe, S. K. (2015). The ontogeny of gap crossing behaviour in Bornean orangutans (Pongo pygmaeus wurmbii). PLoS One, 10(7).

  7. Chatani, K. (2003). Positional behavior of free-ranging Japanese macaques (Macaca fuscata). Primates, 44(1), 13–23.

    Article  Google Scholar 

  8. Coolidge, H. J., & Shea, B. T. (1982). External body dimensions of Pan paniscus and Pan troglodytes chimpanzees. Primates, 23(2), 245–251.

    Article  Google Scholar 

  9. Das, J., Biswas, J., Bhattacherjee, P. C., & Rao, S. (2009). Canopy bridges: An effective conservation tactic for supporting gibbon populations in forest fragments. In D. Whittaker & S. Lappan (Eds.), The gibbons: New perspectives on small ape socioecology and population biology (pp. 467–475). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.

  10. Demes, B., Fleagle, J., & Jungers, W. (1999). Takeoff and landing forces of leaping strepsirhine primates. Journal of Human Evolution, 37(2), 279–292.

    CAS  Article  Google Scholar 

  11. Demes, B., Jungers, W. L., Gross, T. S., & Fleagle, J. G. (1995). Kinetics of leaping primates: Influence of substrate orientation and compliance. American Journal of Physical Anthropology, 96(4), 419–429.

    CAS  Article  Google Scholar 

  12. Doran, D. M. (1992). The ontogeny of chimpanzee and pygmy chimpanzee locomotor behavior: A case study of paedomorphism and its behavioral correlates. Journal of Human Evolution, 23(2), 139–157.

    Article  Google Scholar 

  13. Doran, D. M. (1993). Comparative locomotor behavior of chimpanzees and bonobos: The influence of morphology on locomotion. American Journal of Physical Anthropology, 91(1), 83–98.

    CAS  Article  Google Scholar 

  14. Druelle, F., Schoonaert, K., Aerts, P., Nauwelaerts, S., Stevens, J. M., & D'Août, K. (2018). Segmental morphometrics of bonobos (Pan paniscus): Are they really different from chimpanzees (Pan troglodytes)? Journal of Anatomy, 233(6), 843–853.

    CAS  Article  Google Scholar 

  15. Dunbar, D. C. (1988). Aerial maneuvers of leaping lemurs: The physics of whole-body rotations while airborne. American Journal of Primatology, 16(4), 291–303.

    Article  Google Scholar 

  16. Fan, P., Scott, M. B., Fei, H., & Ma, C. (2013). Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integrative Zoology, 8(4), 356–364.

    Article  Google Scholar 

  17. Fleagle, J. G. (1976). Locomotion and posture of the Malayan Siamang and implications for hominoid evolution. Folia Primatologica, 26(4), 245–269.

    CAS  Article  Google Scholar 

  18. Fleagle, J. G. (2013). Primate adaptation and evolution (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  19. Fleagle, J. G., & Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. American Journal of Physical Anthropology, 52(3), 301–314.

    Article  Google Scholar 

  20. Gebo, D. L. (1992). Locomotor and postural behavior in Alouatta palliata and Cebus capucinus. American Journal of Primatology, 26(4), 277–290.

    Article  Google Scholar 

  21. Grosprêtre, S., & Lepers, R. (2016). Performance characteristics of Parkour practitioners: Who are the traceurs? European Journal of Sport Science, 16(5), 526–535.

    Article  Google Scholar 

  22. Halsey, L. G., Coward, S. R., & Thorpe, S. K. (2015). Bridging the gap: Parkour athletes provide new insights into locomotion energetics of arboreal apes. Biology Letters, 12(11), 20160608.

    Article  Google Scholar 

  23. Hunt, K. D. (2016). Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. Journal of Anatomy, 228(4), 630–685.

    Article  Google Scholar 

  24. Hunt, K. D., Cant, J., Gebo, D., Rose, M., Walker, S., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37(4), 363–387.

    Article  Google Scholar 

  25. Junker, J., Blake, S., Boesch, C., Campbell, G., du Toit, L., et al (2012). Recent decline in suitable environmental conditions for African great apes. Diversity and Distributions, 18(11), 1077–1091.

    Article  Google Scholar 

  26. Lindshield, S. M. (2016). Protecting nonhuman primates in peri-urban environments: A case study of Neotropical monkeys, corridor ecology, and coastal economy in the Caribe Sur of Costa Rica. In M. T. Waller (Ed.), Ethnoprimatology: Primate conservation in the 21st century (pp. 351–369). Cham, Switzerland: Springer International.

    Google Scholar 

  27. Mittermeier, R. A., & Fleagle, J. G. (1976). The locomotor and postural repertoires of Ateles geoffroyi and Colobus guereza, and a reevaluation of the locomotor category semibrachiation. American Journal of Physical Anthropology, 45(2), 235–255.

    Article  Google Scholar 

  28. Narat, V., Pennec, F., Simmen, B., Ngawolo, J. C. B., & Krief, S. (2015). Bonobo habituation in a forest-savanna mosaic habitat: Influence of ape species, habitat type, and sociocultural context. Primates, 56(4), 339–349.

    Article  Google Scholar 

  29. O'Neill, M. C., Umberger, B. R., Holowka, N. B., Larson, S. G., & Reiser, P. J. (2017). Chimpanzee super strength and human skeletal muscle evolution. Proceedings of the National Academy of Sciences of the USA, 114(28), 7343–7348.

    CAS  Article  Google Scholar 

  30. Pennec, F., Krief, S., Hladik, A., Lubini Ayingweu, C., Bortolamiol, S., et al (2016). Floristic and structural vegetation typology of bonobo habitats in a forest-savanna mosaic (Bolobo Territory, DR Congo). Plant Ecology and Evolution, 149(2), 199–215.

    Article  Google Scholar 

  31. Pontzer, H., & Wrangham, R. W. (2004). Climbing and the daily energy cost of locomotion in wild chimpanzees: Implications for hominoid locomotor evolution. Journal of Human Evolution, 46(3), 315–333.

    Article  Google Scholar 

  32. Ripley, S. (1967). The leaping of langurs: A problem in the study of locomotor adaptation. American Journal of Physical Anthropology, 26(2), 149–170.

    Article  Google Scholar 

  33. Scholz, M. N., D'Août, K., Bobbert, M. F., & Aerts, P. (2006). Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties. Proceedings of the Royal Society of London B: Biological Sciences, 273(1598), 2177–2184.

    Google Scholar 

  34. Shea, B. T. (1984). An allometric perspective on the morphological and evolutionary relationships between pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees. In R. L. Susman (Ed.), The pygmy chimpanzee: Evolutionary biology and behavior (pp. 89–130). New York: Springer-Verlag.

    Google Scholar 

  35. Susman, R. L., Badrian, N. L., & Badrian, A. J. (1980). Locomotor behavior of Pan paniscus in Zaire. American Journal of Physical Anthropology, 53(1), 69–80.

    Article  Google Scholar 

  36. Thorpe, S. K. S., & Crompton, R. H. (2006). Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. American Journal of Physical Anthropology, 131(3), 384–401.

    Article  Google Scholar 

  37. Thorpe, S. K. S., Crompton, R. H., & Alexander, R. M. (2007). Orangutans use compliant branches to lower the energetic cost of locomotion. Biology Letters, 3(3), 253–256.

    CAS  Article  Google Scholar 

  38. Zihlman, A. L., & Cramer, D. L. (1978). Skeletal differences between pygmy (Pan paniscus) and common chimpanzees (Pan troglodytes). Folia Primatologica, 29(2), 86–94.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Mbou-Mon-Tour staff and especially our field assistants Osa Otsiu Epany and Mozungo Ngofuna. We thank French NGO Bonobo ECO and the Eco-anthropology unit of the CNRS for financial support. We thank the two referees for their constructive and detailed comments on the first version of the manuscript. We are very grateful to the editor-in-chief of the International Journal of Primatology, Joanna M. Setchell, who revised the manuscript and improved the English.

Author information

Affiliations

Authors

Contributions

VN conceived the initial part of the study and the methodology; VN and JCBN acquired funding and conducted fieldwork; FD and PA analyzed the data; and FD wrote the original draft. PA and VN reviewed the manuscript and JCBN provided editorial advice.

Corresponding author

Correspondence to François Druelle.

Additional information

Handling Editor: Joanna M. Setchell

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Druelle, F., Aerts, P., Ngawolo, J.C.B. et al. Impressive Arboreal Gap-Crossing Behaviors in Wild Bonobos, Pan paniscus . Int J Primatol 41, 129–140 (2020). https://doi.org/10.1007/s10764-020-00140-z

Download citation

Keywords

  • Fieldwork
  • Habitat fragmentation
  • Hominoid
  • Leaping
  • Locomotion