The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal

Article

Abstract

Primates are now known to possess a keen sense of smell that serves them in various contexts, including feeding. Many primate species are frugivorous and provide essential seed dispersal services to a variety of plants. Studies of pollination ecology, and recently seed dispersal ecology, indicate that animal mutualist behavior exerts selection pressures that drive changes in flower and fruit traits. As a result, the use of olfaction in in primate feeding ecology may have affected the evolution of fruit odor in species that rely on primate seed dispersal. However, this hypothesis is seldom tested. Here, we summarize the available information on how primates may have affected the evolution of fruit odor. We ask what the chemistry of primate fruit odor may look like, what information fruit odor may convey, whether there are geographical differences in fruit odor, and what other factors may affect the odor of fruits consumed by primates. We identify many gaps in the available data and offer research questions, hypotheses, and predictions for future studies. Finally, to facilitate standardization in the field, we discuss methodological issues in the process of odor sampling and analysis.

Keywords

Coevolution Fruit aroma Fruit secondary metabolites Olfaction Sensory ecology 

Notes

Acknowledgments

We thank Hiroki Sato, Laurence Culot, Yamato Tsuji, and Onja Razafindratsima for inviting us to contribute to this special issue. We also thank Joanna Setchell, Onja Razafindratsima, and three anonymous reviewers for helpful comments on a previous draft of this manuscript. O. Nevo was funded by a German Science Foundation grant (NE 2156/1-1) while working on this manuscript.

Supplementary material

10764_2018_21_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)
10764_2018_21_MOESM2_ESM.xls (42 kb)
ESM 2 (XLS 42 kb)

References

  1. Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Carol Streams, IL: Allured.Google Scholar
  2. Asensio, N., Brockelman, W. Y., Malaivijitnond, S., & Reichard, U. H. (2011). Gibbon travel paths are goal oriented. Animal Cognition, 14, 395–405.  https://doi.org/10.1007/s10071-010-0374-1.PubMedCrossRefGoogle Scholar
  3. Baron, G., Frahm, H. D., Bhatnagar, K. P., & Stephan, H. (1983). Comparison of brain structure volumes in insectivora and primates. III. Main olfactory bulb (MOB). Journal für Hirnforschung, 24, 551–568.PubMedGoogle Scholar
  4. Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F. W. A., Bouwmeester, H. J., & Aharoni, A. (2004). Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology, 135, 1865–1878.  https://doi.org/10.1104/pp.104.042580.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341–346.  https://doi.org/10.1016/j.cub.2006.12.039.PubMedCrossRefGoogle Scholar
  6. Borges, R. M. (2015). Fruit and seed volatiles: Multiple stage settings, actors and props in an evolutionary play. Journal of the Indian Institute of Science, 95, 93–104.Google Scholar
  7. Borges, R. M., Bessière, J. M., & Hossaert-McKey, M. (2008). The chemical ecology of seed dispersal in monoecious and dioecious figs. Functional Ecology, 22, 484–493.  https://doi.org/10.1111/j.1365-2435.2008.01383.x.CrossRefGoogle Scholar
  8. Borges, R. M., Bessière, J.-M., & Ranganathan, Y. (2013). Diel variation in fig volatiles across syconium development: Making sense of scents. Journal of Chemical Ecology, 39, 630–642.  https://doi.org/10.1007/s10886-013-0280-5.PubMedCrossRefGoogle Scholar
  9. Boulet, M., Charpentier, M. J. E., & Drea, C. M. (2009). Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evolutionary Biology, 9, 281.  https://doi.org/10.1186/1471-2148-9-281.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bushdid, C., Magnasco, M. O., Vosshall, L. B., & Keller, A. (2014). Humans can discriminate more than 1 trillion olfactory stimuli. Science, 343, 1370–1372.  https://doi.org/10.1126/science.1249168.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Carrigan, M. A., Uryasev, O., Frye, C. B., Eckman, B. L., Myers, C. R., et al (2015). Hominids adapted to metabolize ethanol long before human-directed fermentation. Proceedings of the National Academy of Sciences of the USA, 112, 458–463.  https://doi.org/10.1073/pnas.1404167111.PubMedCrossRefGoogle Scholar
  12. Chapman, C. A., & Russo, S. E. (2007). Linking behavioral ecology with forest community structure. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 510–525). New York: Oxford University Press.Google Scholar
  13. Cipollini, M. L., & Levey, D. J. (1997). Secondary metabolites of fleshy vertebrate-dispersed fruits: Adaptive hypotheses and implications for seed dispersal. The American Naturalist, 150, 346–372.  https://doi.org/10.1086/286069.PubMedCrossRefGoogle Scholar
  14. Cipollini, M. L., Paulk, E., Mink, K., Vaughn, K., & Fischer, T. (2004). Defense tradeoffs in fleshy fruits: Effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum Carolinense. Journal of Chemical Ecology, 30(1), 1–17.  https://doi.org/10.1023/B:JOEC.0000013179.45661.68.PubMedCrossRefGoogle Scholar
  15. delBarco-Trillo, J., & Drea, C. M. (2014). Socioecological and phylogenetic patterns in the chemical signals of strepsirrhine primates. Animal Behaviour, 97, 249–253.  https://doi.org/10.1016/j.anbehav.2014.07.009.CrossRefGoogle Scholar
  16. Dobson, H. E. M. (2006). Relationship between floral fragrance composition and type of pollinator. In N. Dudareva & E. Pichersky (Eds.), Biology of floral scent (pp. 147–198). Boca Raton, FL: CRC Press.  https://doi.org/10.1201/9781420004007.sec4.CrossRefGoogle Scholar
  17. Dominy, N. J. (2004). Fruits, fingers, and fermentation: The sensory cues available to foraging primates. Integrative and Comparative Biology, 44(4), 295–303.  https://doi.org/10.1093/icb/44.4.295.PubMedCrossRefGoogle Scholar
  18. Dominy, N. J., Yeakel, J. D., Bhat, U., Ramsden, L., Wrangham, R. W., & Lucas, P. W. (2016). How chimpanzees integrate sensory information to select figs. Interface Focus, 6, 20160001.  https://doi.org/10.1098/rsfs.2016.0001.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Donati, G., Santini, L., Eppley, T. M., Arrigo-Nelson, S. J., Balestri, M., et al (2017). Low levels of fruit nitrogen as drivers for the evolution of Madagascar’s primate communities. Scientific Reports, 7, 14406.  https://doi.org/10.1038/s41598-017-13906-y.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dong, D., He, G., Zhang, S., & Zhang, Z. (2009). Evolution of olfactory receptor genes in primates dominated by birth-and-death process. Genome Biology and Evolution, 1, 258–264.  https://doi.org/10.1093/gbe/evp026.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dormont, L., Bessière, J.-M., McKey, D., & Cohuet, A. (2013). New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human–pathogen–vector interactions. The Journal of Experimental Biology, 216, 2783–2788.  https://doi.org/10.1242/jeb.085936.PubMedCrossRefGoogle Scholar
  22. Dötterl, S., & Jürgens, A. (2005). Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Systematics and Evolution, 255, 99–109.  https://doi.org/10.1007/s00606-005-0344-2.CrossRefGoogle Scholar
  23. Dötterl, S., Wolfe, L. M., & Jürgens, A. (2005). Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry, 66, 203–213.  https://doi.org/10.1016/j.phytochem.2004.12.002.PubMedCrossRefGoogle Scholar
  24. Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135, 1893–1902.  https://doi.org/10.1104/pp.104.049981.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dudley, R. (2000). Evolutionary origins of human alcoholism in primate frugivory. The Quarterly Review of Biology, 75, 3–15.  https://doi.org/10.1086/393255.PubMedCrossRefGoogle Scholar
  26. Dudley, R. (2002). Fermenting fruit and the historical ecology of ethanol ingestion: Is alcoholism in modern humans an evolutionary hangover? Addiction, 97, 381–388.  https://doi.org/10.1046/j.1360-0443.2002.00002.x.PubMedCrossRefGoogle Scholar
  27. Dudley, R. (2004). Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integrative and Comparative Biology, 44, 315–323.  https://doi.org/10.1093/icb/44.4.315.PubMedCrossRefGoogle Scholar
  28. Eriksson, O. (2014). Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews, 91, 168–189.PubMedCrossRefGoogle Scholar
  29. Eriksson, O., & Ehrlén, J. (1998). Secondary metabolites in fleshy fruits: Are adaptive explanations needed? The American Naturalist, 152, 905–907.  https://doi.org/10.1086/286217.PubMedCrossRefGoogle Scholar
  30. Farmer, E. E. (2014). Leaf defence. Oxford: Oxford University Press.  https://doi.org/10.1093/acprof:oso/9780199671441.001.0001.CrossRefGoogle Scholar
  31. Flörchinger, M., Braun, J., Böhning-Gaese, K., & Schaefer, H. M. (2010). Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia, 164, 151–161.  https://doi.org/10.1007/s00442-010-1655-8.PubMedCrossRefGoogle Scholar
  32. Fobes, J. L., & King, J. E. (1982). Vision: The dominant primate modality. In J. L. Fobes & J. E. King (Eds.), Primate behavior (pp. 219–243). New York: Academic Press.Google Scholar
  33. Ganzhorn, J. U., Arrigo-Nelson, S., Boinski, S., Bollen, A., Carrai, V., et al (2009). Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS One, 4(12), e8253.  https://doi.org/10.1371/journal.pone.0008253.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., et al (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.  https://doi.org/10.1007/BF00378906.PubMedCrossRefGoogle Scholar
  35. Gershenzon, J. (1994). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20, 1281–1328.  https://doi.org/10.1007/BF02059810.PubMedCrossRefGoogle Scholar
  36. Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408–414.  https://doi.org/10.1038/nchembio.2007.5.PubMedCrossRefGoogle Scholar
  37. Gervasi, D. D. L., & Schiestl, F. P. (2017). Real-time divergent evolution in plants driven by pollinators. Nature Communications, 8, 14691.  https://doi.org/10.1038/ncomms14691.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., & Pääbo, S. (2004). Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2, 0120–0125.CrossRefGoogle Scholar
  39. Gilad, Y., Man, O., & Glusman, G. (2005). A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Research, 15, 224–230.  https://doi.org/10.1101/gr.2846405.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. The Plant Cell, 16, 170–181.CrossRefGoogle Scholar
  41. Gochman, S. R., Brown, M. B., & Dominy, N. J. (2016). Alcohol discrimination and preferences in two species of nectar-feeding primate. Royal Society Open Science, 3, 160217.  https://doi.org/10.1098/rsos.160217.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311, 815–819.  https://doi.org/10.1126/science.1112614.PubMedCrossRefGoogle Scholar
  43. Hernandez Salazar, L. T., Laska, M., & Rodriguez Luna, E. (2003). Olfactory sensitivity for aliphatic esters in spider monkeys (Ateles geoffroyi). Behavioral Neuroscience, 117, 1142–1149.  https://doi.org/10.1037/0735-7044.117.6.1142.PubMedCrossRefGoogle Scholar
  44. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., & Kawamura, S. (2009). Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour, 77, 1421–1426.  https://doi.org/10.1016/j.anbehav.2009.02.012.CrossRefGoogle Scholar
  45. Hodgkison, R., Ayasse, M., Kalko, E. K. V., Häberlein, C., Schulz, S., et al (2007). Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of Paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). Journal of Chemical Ecology, 33, 2097–2110.  https://doi.org/10.1007/s10886-007-9367-1.PubMedCrossRefGoogle Scholar
  46. Hodgkison, R., Ayasse, M., Häberlein, C., Schulz, S., Zubaid, A., et al (2013). Fruit bats and bat fruits: The evolution of fruit scent in relation to the foraging behaviour of bats in the new and old world tropics. Functional Ecology, 27, 1075–1084.  https://doi.org/10.1111/1365-2435.12101.CrossRefGoogle Scholar
  47. Hübener, F., & Laska, M. (1998). Assessing olfactory performance in an old world primate, Macaca nemestrina. Physiology & Behavior, 64, 521–527.  https://doi.org/10.1016/S0031-9384(98)00099-7.CrossRefGoogle Scholar
  48. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2957–2967.  https://doi.org/10.1098/rstb.2009.0039.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86, 1183–1205.  https://doi.org/10.1016/j.anbehav.2013.09.021.CrossRefGoogle Scholar
  50. Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science, 219, 187–189.  https://doi.org/10.1126/science.219.4581.187.PubMedCrossRefGoogle Scholar
  51. Janson, C. H., & Byrne, R. W. (2007). What wild primates know about resources: Opening up the black box. Animal Cognition, 10, 357–367.  https://doi.org/10.1007/s10071-007-0080-9.PubMedCrossRefGoogle Scholar
  52. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56–65.  https://doi.org/10.1046/j.1523-5408.2002.00004.x.PubMedCrossRefGoogle Scholar
  53. Kessler, A. (2015). The information landscape of plant constitutive and induced secondary metabolite production. Current Opinion in Insect Science, 8, 47–53.  https://doi.org/10.1016/j.cois.2015.02.002.CrossRefGoogle Scholar
  54. Knauer, A. C., & Schiestl, F. P. (2015). Bees use honest floral signals as indicators of reward when visiting flowers. Ecology Letters, 18, 135–143.  https://doi.org/10.1111/ele.12386.PubMedCrossRefGoogle Scholar
  55. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The Botanical Review, 72, 1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2.Google Scholar
  56. Kücklich, M., Möller, M., Marcillo, A., Einspanier, A., Weiß, B. M., et al (2017). Different methods for volatile sampling in mammals. PLoS One, 12, e0183440.  https://doi.org/10.1371/journal.pone.0183440.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Langergraber, K. E., Watts, D. P., Vigilant, L., & Mitani, J. C. (2017). Group augmentation, collective action, and territorial boundary patrols by male chimpanzees. Proceedings of the National Academy of Sciences of the USA, 114, 7337–7342.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Laska, M., & Freyer, D. (1997). Olfactory discrimination ability for aliphatic esters in squirrel monkeys and humans. Chemical Senses, 22, 457–465.  https://doi.org/10.1093/chemse/22.4.457.PubMedCrossRefGoogle Scholar
  59. Laska, M., & Hudson, R. (1993). Discriminating parts from the whole: Determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. Journal of Comparative Physiology A: Molecular and Integrative Physiology, 173, 249–256.CrossRefGoogle Scholar
  60. Laska, M., & Seibt, A. (2002a). Olfactory sensitivity for aliphatic esters in squirrel monkeys and pigtail macaques. Behavioural Brain Research, 134, 165–174.  https://doi.org/10.1016/S0166-4328(01)00464-8.PubMedCrossRefGoogle Scholar
  61. Laska, M., & Seibt, A. (2002b). Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. The Journal of Experimental Biology, 205, 1633–1643.PubMedGoogle Scholar
  62. Laska, M., Seibt, A., & Weber, A. (2000). “Microsmatic” primates revisited: Olfactory sensitivity in the squirrel monkey. Chemical Senses, 25, 47–53.  https://doi.org/10.1093/chemse/25.1.47.PubMedCrossRefGoogle Scholar
  63. Laska, M., Wieser, A., Rivas Bautista, R. M., & Hernandez Salazar, L. T. (2004). Olfactory sensitivity for carboxylic acids in spider monkeys and pigtail macaques. Chemical Senses, 29, 101–109.  https://doi.org/10.1093/chemse/bjh010.PubMedCrossRefGoogle Scholar
  64. Laska, M., Genzel, D., & Wieser, A. (2005). The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers. Chemical Senses, 30, 171–175.  https://doi.org/10.1093/chemse/bji013.PubMedCrossRefGoogle Scholar
  65. Laska, M., Höfelmann, D., Huber, D., & Schumacher, M. (2006a). The frequency of occurrence of acyclic monoterpene alcohols in the chemical environment does not determine olfactory sensitivity in nonhuman primates. Journal of Chemical Ecology, 32, 1317–1331.  https://doi.org/10.1007/s10886-006-9090-3.PubMedCrossRefGoogle Scholar
  66. Laska, M., Rivas Bautista, R. M., & Hernandez Salazar, L. T. (2006b). Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). American Journal of Physical Anthropology, 129, 112–120.  https://doi.org/10.1002/ajpa.20252.PubMedCrossRefGoogle Scholar
  67. Laska, M., Bautista, R. M. R., Höfelmann, D., Sterlemann, V., & Hernandez Salazar, L. T. (2007). Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human primate. The Journal of Experimental Biology, 210, 4169–4178.  https://doi.org/10.1242/jeb.012237.PubMedCrossRefGoogle Scholar
  68. Lavagnini, I., & Magno, F. (2007). A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry. Mass Spectrometry Reviews, 26, 1–18.  https://doi.org/10.1002/mas.20100.PubMedCrossRefGoogle Scholar
  69. Lerdau, M., & Throop, H. L. (2000). Sources of variability in isoprene emission and photosynthesis in two species of tropical wet forest trees. Biotropica, 32, 670–676. https://doi.org/10.1646/0006-3606(2000)032[0670:SOVIIE]2.0.CO;2.Google Scholar
  70. Link, A., & Stevenson, P. R. (2004). Fruit dispersal syndromes in animal disseminated plants at Tinigua National Park, Colombia. Revista Chilena de Historia Natural, 77, 319–334.CrossRefGoogle Scholar
  71. Lledo, P., Gheusi, G., & Vincent, J. (2005). Information processing in the mammalian olfactory system. Physiological Reviews, 85, 281–317.  https://doi.org/10.1152/physrev.00008.2004.PubMedCrossRefGoogle Scholar
  72. Lomáscolo, S. B., & Schaefer, H. M. (2010). Signal convergence in fruits: A result of selection by frugivores? Journal of Evolutionary Biology, 23, 614–624.  https://doi.org/10.1111/j.1420-9101.2010.01931.x.PubMedCrossRefGoogle Scholar
  73. Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the USA, 107, 14668–14672.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Matsui, A., Go, Y., & Niimura, Y. (2010). Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision. Molecular Biology and Evolution, 27, 1192–1200.  https://doi.org/10.1093/molbev/msq003.PubMedCrossRefGoogle Scholar
  75. McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The Plant Cell, 7, 1015–1026.  https://doi.org/10.1105/tpc.7.7.1015.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., & Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30, 753–775.  https://doi.org/10.1007/s10764-009-9383-9.CrossRefGoogle Scholar
  77. Melin, A. D., Chiou, K. L., Walco, E. R., Bergstrom, M. L., & Kawamura, S. (2017). Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator). Proceedings of the National Academy of Sciences of the USA, 114, 201705957.CrossRefGoogle Scholar
  78. Nevo, O., & Heymann, E. W. (2015). Led by the nose: Olfaction in primate feeding ecology. Evolutionary Anthropology, 24, 137–148.  https://doi.org/10.1002/evan.21458.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nevo, O., Garri, R. O., Hernandez Salazar, L. T., Schulz, S., Heymann, E. W., et al (2015). Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 5, 14895.  https://doi.org/10.1038/srep14895.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nevo, O., Heymann, E. W., Schulz, S., & Ayasse, M. (2016). Fruit odor as a ripeness signal for seed-dispersing primates? A case study on four Neotropical plant species. Journal of Chemical Ecology, 42, 323–328.  https://doi.org/10.1007/s10886-016-0687-x.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nevo, O., Valenta, K., Tevlin, A. G., Omeja, P., Styler, S. A., et al (2017). Fruit defence syndromes: The independent evolution of mechanical and chemical defences. Evolutionary Ecology, 31, 913–923.  https://doi.org/10.1007/s10682-017-9919-y.CrossRefGoogle Scholar
  82. Niimura, Y. (2012). Olfactory receptor multigene family in vertebrates: From the viewpoint of evolutionary genomics. Current Genomics, 13, 103–114.  https://doi.org/10.2174/138920212799860706.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Niimura, Y., Matsui, A., & Touhara, K. (2014). Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Research, 24, 1485–1496.  https://doi.org/10.1101/gr.169532.113.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pellmyr, O., & Thien, L. B. (1986). Insect reproduction and floral fragrances: Keys to the evolution of the angiosperms? Taxon, 35, 76–85.  https://doi.org/10.2307/1221036.CrossRefGoogle Scholar
  85. Peris, J. E., Rodríguez, A., Peña, L., & Fedriani, J. M. (2017). Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Scientific Reports, 7, 5646.  https://doi.org/10.1038/s41598-017-05643-z.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Raguso, R. A. (2008). Wake up and smell the roses: The ecology and evolution of floral scent. Annual Review of Ecology, Evolution, and Systematics, 39, 549–569.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095601.CrossRefGoogle Scholar
  87. Rodríguez, A., San Andrés, V., Cervera, M., Redondo, A., Alquézar, B., et al (2011). Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiology, 156, 793–802.  https://doi.org/10.1104/pp.111.176545.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rodríguez, A., Alquézar, B., & Peña, L. (2013). Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytologist, 197, 36–48.  https://doi.org/10.1111/j.1469-8137.2012.04382.x.PubMedCrossRefGoogle Scholar
  89. Sánchez, F., Korine, C., Pinshow, B., & Dudley, R. (2004). The possible roles of ethanol in the relationship between plants and frugivores: First experiments with Egyptian fruit bats. Integrative and Comparative Biology, 44, 290–294.  https://doi.org/10.1093/icb/44.4.290.PubMedCrossRefGoogle Scholar
  90. Sánchez, F., Korine, C., Steeghs, M., Laarhoven, L.-J., Cristescu, S. M., et al (2006). Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). Journal of Chemical Ecology, 32, 1289–1300.  https://doi.org/10.1007/s10886-006-9085-0.PubMedCrossRefGoogle Scholar
  91. Schaefer, H. M., Valido, A., & Jordano, P. (2014). Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132516.  https://doi.org/10.1098/rspb.2013.2516.CrossRefGoogle Scholar
  92. Schiestl, F. P. (2015). Ecology and evolution of floral volatile- mediated information transfer in plants. New Phytologist, 206, 571–577.  https://doi.org/10.1111/nph.13243.PubMedCrossRefGoogle Scholar
  93. Schlumpberger, B. O., Clery, R. A., & Barthlott, W. (2006). A unique cactus with scented and possibly bat-dispersed fruits: Rhipsalis juengeri. Plant Biology, 8, 265–270.  https://doi.org/10.1055/s-2005-873045.PubMedCrossRefGoogle Scholar
  94. Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. Plant Journal, 54, 712–732.  https://doi.org/10.1111/j.1365-313X.2008.03446.x.PubMedCrossRefGoogle Scholar
  95. Steiger, S. S., Fidler, A. E., Valcu, M., & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society of London B: Biological Science, 275, 2309–2317.  https://doi.org/10.1098/rspb.2008.0607.CrossRefGoogle Scholar
  96. Stephan, H., Frahm, H. D., & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35, 1–29.  https://doi.org/10.1159/000155963.CrossRefGoogle Scholar
  97. Teh, B. T., Lim, K., Yong, C. H., Ng, C. C. Y., Rao, S. R., et al (2017). The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics, 49, 1633–1641.  https://doi.org/10.1038/ng.3972.PubMedCrossRefGoogle Scholar
  98. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., & Schnitzler, J.-P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45, 540–560.  https://doi.org/10.1111/j.1365-313X.2005.02612.x.PubMedCrossRefGoogle Scholar
  99. Valenta, K., Burke, R. J., Styler, S. A., Jackson, D. A., Melin, A. D., & Lehman, S. M. (2013). Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Scientific Reports, 3, 2424.  https://doi.org/10.1038/srep02424.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Valenta, K., Brown, K. A., Melin, A. D., Monckton, S. K., Styler, S. A., et al (2015a). It’s not easy being blue: Are there olfactory and visual trade-offs in plant signalling? PLoS One, 10, e0131725.  https://doi.org/10.1371/journal.pone.0131725.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Valenta, K., Brown, K. A., Rafaliarison, R. R., Styler, S. A., Jackson, D., et al (2015b). Sensory integration during foraging: The importance of fruit hardness, colour, and odour to brown lemurs. Behavioral Ecology and Sociobiology.  https://doi.org/10.1007/s00265-015-1998-6.
  102. Valenta, K., Edwards, M., Rafaliarison, R. R., Johnson, S. E., Holmes, S. M., et al (2016a). Visual ecology of true lemurs suggests a cathemeral origin for the primate cone opsin polymorphism. Functional Ecology, 30(6), 932–942.  https://doi.org/10.1111/1365-2435.12575.CrossRefGoogle Scholar
  103. Valenta, K., Miller, C. N., Monckton, S. K., Melin, A. D., Lehman, S. M., et al (2016b). Fruit ripening signals and cues in a Madagascan dry forest: Haptic indicators reliably indicate fruit ripeness to dichromatic lemurs. Evolutionary Biology, 43, 344–355.  https://doi.org/10.1007/s11692-016-9374-7.CrossRefGoogle Scholar
  104. Valenta, K., Nevo, O., Martel, C., & Chapman, C. A. (2017). Plant attractants: Integrating insights from seed dispersal and pollination ecology. Evolutionary Ecology, 31, 249–267.  https://doi.org/10.1007/s10682-016-9870-3.CrossRefGoogle Scholar
  105. Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology, 183, 621–633.  https://doi.org/10.1007/s003590050286.PubMedCrossRefGoogle Scholar
  106. Weiss, K. M. (2014). I smell a rat! (and 999,999,999,999 other things, too). Evolutionary Anthropology, 23, 166–171.  https://doi.org/10.1002/evan.21424.PubMedCrossRefGoogle Scholar
  107. Whitehead, S. R., & Bowers, M. D. (2013). Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. The American Naturalist, 182, 563–577.  https://doi.org/10.1086/673258.PubMedCrossRefGoogle Scholar
  108. Wright, P. C., Razafindratsita, V. R., Pochron, S. T., & Jernvall, J. (2005). The key to Madagascar frugivores. In J. L. Dew & J. P. Boubli (Eds.), Tropical fruits and frugivores: The search for strong interactors (pp. 121–138). Dordrecht, the Netherlands: Springer.CrossRefGoogle Scholar
  109. Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., Wu, J., & King, G. J. (2015). Disruption of a carotenoid cleavage dioxygenase 4 gene converts flower colour from white to yellow in Brassica species. New Phytologist, 206, 1513–1526.  https://doi.org/10.1111/nph.13335.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  2. 2.Department of AnthropologyMcGill UniversityQuebecCanada

Personalised recommendations