International Journal of Primatology

, Volume 36, Issue 6, pp 1086–1100 | Cite as

Howler Monkeys (Alouatta palliata mexicana) Produce Tannin-Binding Salivary Proteins

  • F. Espinosa Gómez
  • Juan Santiago García
  • Sergio Gómez Rosales
  • Ian R. Wallis
  • Colin A. Chapman
  • Jorge Morales Mávil
  • Domingo Canales Espinosa
  • Laura Hernández Salazar


Dietary tannins are ubiquitous in woody plants and may have serious negative effects on herbivores by inducing a loss of dietary protein and producing toxins if they are hydrolyzed in the gut. Many herbivorous mammals counter the negative effects of tannins through tannin-binding salivary proteins (TBSPs) that inactivate tannins by forming insoluble complexes and prevent them from interacting with other more valuable proteins. Howlers are the most folivorous New World primates and ingest foods with varying tannin content. We studied the presence of TBSPs in six wild mantled howlers (Alouatta palliata mexicana) immediately after capture and in captivity when fed on two diets composed of natural ingredients: a mixture of fruit and leaves or only leaves. Protein concentration was determined in whole saliva samples, followed by gel electrophoresis. We identified two protein bands of 17 and 25 kDa that have tannin-binding capacity. Although the monkeys ate almost twice as much condensed tannins in the leaf diet than in the fruits and leaves diet (7 vs. 4 g/d dry matter) the salivary protein concentration did not differ between the two diets (leaf diet: 3.29 ± SE 0.82 vs. fruit and leaves diet: 3.42 ± SE 0.62 mg/ml) and we found no additional protein bands in response to either diet. We suggest that the continuous expression of TBSPs is part of a dietary strategy that enables howlers to consume diets with variable tannin contents, thus partly explaining their dietary flexibility. Although the importance of salivary proteins to arboreal primates is broadly accepted, to our knowledge this is the first report of TBSPs in any Neotropical primate.


Condensed tannins Mantled howler monkeys Plant secondary metabolites Saliva SDS-PAGE Tannins 



This research was funded by CONACYT-FOMIX 109499 and by CONACYT I010/458/2013 C-703/2013. F. E. Gómez was supported by CONACYT Scholarship 171093. We especially appreciate the work and dedication of several field assistants: Gildardo Castañeda, Antonio Jauregui, Rubén Mateo, and biologist Denedi García. F. E. Gómez thanks Dr. Fausto Rojas for help with laboratory techniques and Dr. Javier Hermida for his support during the capture of animals. We are very grateful to Dr. Ken Glander, Dr. Ellen Dierenfeld, and Dr. Jessica Rothman for the very helpful comments that improved the article.


  1. Ammar, H., López, S., Salem, A. Z. M., Bodas, R., & González, J. R. (2011). Effect of saliva from sheep that have ingested quebracho tannins on the in vitro rumen fermentation activity to digest tannin-containing shrubs. Animal Feed Science and Technology, 163(2011), 77–83.CrossRefGoogle Scholar
  2. Ann, D. K., & Lin, H. H. (1993). Macaque salivary proline-rich protein: structure, evolution, and expression. Critical Reviews in Oral Biology & Medicine, 4, 545–555.Google Scholar
  3. Aristizábal Borja, J. F. (2013). Estrategias de forrajeo y características nutricionales del mono aullador negro (Alouatta pigra) en un ambiente fragmentado. Master’s thesis, Instituto de Ecología, Xalapa, Veracruz, México.Google Scholar
  4. Asquith, T. N., Mehansho, H., Rogler, J., Butler, L., & Carlson, D. M. (1985). Induction of proline-rich protein biosynthesis in salivary glands by tannins. FASEB Journal, 44, 1097.Google Scholar
  5. Austin, P. J., Suchar, L. A., Robbins, C. T., & Hagerman, A. E. (1989). Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology, 15, 1335–1347.PubMedCrossRefGoogle Scholar
  6. Azen, E. A., & Maeda, N. (1988). Molecular genetics of human salivary proteins and their polymorphisms. In H. Harris & K. Hirschorn (Eds.), Advances in human genetics (pp. 141–199). New York: Plenum Press.Google Scholar
  7. Baumgarten, A., & Williamson, G. (2007). The distributions of howling monkeys (Alouatta pigra and Alouatta palliata) in southeastern Mexico and Central America. Primates. doi: 10.1007/s10329-007-0049-y.PubMedGoogle Scholar
  8. Beeley, J. A., Sweeney, D., Lindsay, J. C., Buchanan, M. I., Sarna, I., & Khoo, K. S. (1991). Sodium dodecyl sulphate polyacrylamide gel electrophoresis of human parotid salivary proteins. Electrophoresis, 12, 1032–1041.PubMedCrossRefGoogle Scholar
  9. Bennick, A. (1982). Salivary proline-rich proteins. Molecular and Cellular Biochemistry, 45, 83–99.PubMedCrossRefGoogle Scholar
  10. Bennick, A. (2002). Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, 13, 184–196.CrossRefGoogle Scholar
  11. Boze, H., Marlin, T., Durand, D., Perez, J., Vernhet, A., Canon, F., Sarni-Manchado, P., Cheynier, V., & Cabane, B. (2010). Proline-rich salivary proteins have extended conformations. Biophysical Journal, 99, 656–665.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clauss, M., Gehrke, J., Hatt, J. M., Dierenfeld, E. S., Flach, E. J., Hermes, R., Castell, J., Streich, W. J., & Fickel, J. (2005). Tannin-binding salivary proteins in three captive rhinoceros species. Comparative Biochemistry and Physiology A, 140, 67–72.CrossRefGoogle Scholar
  13. Cortés-Ortiz, L., Rylands, A. B., & Mittermeier, R. A. (2015). The taxonomy of howler monkeys: Integrating old and new knowledge from morphological and genetic studies. In M. Kowalewski, P. Garber, L. Cortés-Ortiz, B. Urbani, & D. Youlatos (Eds.), Howler monkeys. Developments in primatology: Progress and prospects. New York: Springer Science-Business Media.Google Scholar
  14. Crockett, C. (1998). Conservation biology of the genus Alouatta. International Journal of Primatology, 19, 549–578.CrossRefGoogle Scholar
  15. da Costa, G., Lamy, E. F., Silva, C., Andersen, J., Sales Baptista, E., & Coelho, A. V. (2008). Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins. Journal of Chemical Ecology, 34, 376–387.PubMedCrossRefGoogle Scholar
  16. Dearing, M. D. (1997). Effects of Acomastylis rossi tannins on a mammalian herbivore, the North American pika. Ochotona princeps. Oecologia, 109, 122–131.CrossRefGoogle Scholar
  17. DeGabriel, J. L., Moore, B. D., Foley, W. J., & Johnson, C. N. (2009). The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology, 90, 711–719.PubMedCrossRefGoogle Scholar
  18. Diario Oficial de la Federación. (1999). Norma Oficial Mexicana NOM-062-ZOO-1999, 22 de Agosto de 2001.Google Scholar
  19. Domingo Balcells, C., & Veà Baró, J. J. (2009). Developmental stages in the howler monkey, subspecies Alouatta palliata mexicana: a new classification using age-sex categories. Neotropical Primates, 16, 1–8.CrossRefGoogle Scholar
  20. Espinosa Gómez, F. C., Gómez Rosales, S., Wallis, I. R., Canales Espinosa, D., & Hernández Salazar, L. T. (2013). Digestive strategies and food choice in mantled howler monkeys Alouatta palliata mexicana: bases of their dietary flexibility. Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 183(8), 1089–1100.Google Scholar
  21. Fashing, P. J., Dierenfeld, E. S., Christopher, B., & Mowry, C. B. (2007). Influence of plant and soil chemistry on food selection, ranging patterns, and biomass of Colobus guereza in Kakamega Forest, Kenya. International Journal of Primatology, 28(3), 673–703.CrossRefGoogle Scholar
  22. Featherstone, W. R., & Rogler, J. C. (1975). Influence of tannins on the utilization of sorghum grain by rats and chicks. Nutrition Reports International, 11, 491–497.Google Scholar
  23. Fickel, J., Göritz, F., Joest, B. A., Hildebrandt, T., Hofmann, R. R., & Breves, G. (1998). Analysis of parotid and mixed saliva in roe deer (Capreolus capreolus l.). Journal of Comparative Physiology B: Biological Sciences, 168, 257–264.CrossRefGoogle Scholar
  24. Fickel, J., Pitra, C., Joest, B. A., & Hofmann, R. R. (1999). A novel method to evaluate the relative tannin-binding capacities of salivary proteins. Comparative Biochemistry and Physiology, 122C, 225–229.Google Scholar
  25. Gho, F., Penaneira, A., & Lopez-Solis, R. O. (2007). Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth. Journal of Cellular Biochemistry, 100, 487–498.PubMedCrossRefGoogle Scholar
  26. Glander, K. E. (1978). Howling monkey feeding behavior and plant secondary compounds: A study of strategies. In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 561–574). Washington, DC: Smithsonian Institution Press.Google Scholar
  27. Glander, K. E. (1981). Feeding patterns in mantled howler monkeys. In A. Kamil & T. D. Sargent (Eds.), Foraging behavior: Ecological, ethological, and psychological approaches (pp. 231–257). New York: Garland Press.Google Scholar
  28. Glander, K. E. (1982). The impact of plant secondary compounds on primate feeding behavior. Yearbook of Physical Anthropology, 25, 1–18.CrossRefGoogle Scholar
  29. Guengerich, F. P. (2004). Cytochrome p450: what have we learned and what are the future issues? Drug Metabolism Reviews, 36, 159–197.PubMedCrossRefGoogle Scholar
  30. Hagerman, A. E. (2011). The tannin handbook. USDA (United States Department of Agriculture)
  31. Hagerman, A. E., & Robbins, C. T. (1987). Implication of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. Chemical Ecology, 13, 1243–1259.CrossRefGoogle Scholar
  32. Hartree, E. F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422–427.PubMedCrossRefGoogle Scholar
  33. Hill, W. C. O. (1972). Evolutionary biology of the primates. New York: Academic Press.Google Scholar
  34. Hoffmann, U., & Kroemer, H. K. (2004). The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metabolism Reviews, 36, 669–701.PubMedCrossRefGoogle Scholar
  35. IUCN. (1998). IUCN/SSC Guidelines for re-introductions. Prepared by the IUCN/SSC re-introduction specialist group. Gland: IUCN.Google Scholar
  36. Kauffman, D. L., Bennick, A., Blim, M., & Keller, P. J. (1991). Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual. Biochemistry, 30, 3351–3356.PubMedCrossRefGoogle Scholar
  37. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  38. Lamy, E., da Costa, G., Santos, R., Capela e Silva, F., Potes, J., Pereira, A., Coelho, A. V., & Sales Baptista, E. (2010a). Effect of condensed tannins ingestion in sheep and goat parotid saliva proteome. Journal of Animal Physiology and Animal Nutrition, 95, 304–312.PubMedCrossRefGoogle Scholar
  39. Lamy, E., Graca, G., da Costa, G., Franco, C., Capela e Silva, F., Sales Baptista, C., & Varela Coelho, A. (2010b). Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Science, 8, 65.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Leitao, G. G., Mensor, L. L., Amaral, L. F., Floriano, N., Limeira, V. L., Fde Menezes, S., & Leitão, S. G. (1999). Phenolic content and antioxidant activity: A study on plants eaten by a group of howler monkeys (Alouatta fusca). In G. G. Goss, W. R. Hemingway, T. Yoshida, & S. J. Branham (Eds.), Plant polyphenols 2: Chemistry, biology, pharmacology, ecology. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  41. Mandel, I. D., Thompson, R. H., & Ellison, S. A. (1965). Studies on the mucoproteins of human parotid saliva. Archives of Oral Biology, 10, 499–507.PubMedCrossRefGoogle Scholar
  42. Mau, M., de Almeida, A. M., Coelho, A. V., & Südekum, K. H. (2011). First identification of tannin-binding proteins in saliva of Papio hamadryas using MS/MS mass spectrometry. American Journal of Primatology, 73, 896–902.PubMedCrossRefGoogle Scholar
  43. Mau, M., Südekum, K. H., Johann, A., Sliwa, A., & Kaiser, T. M. (2009). Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. American Journal of Primatology, 71, 663–669.PubMedCrossRefGoogle Scholar
  44. McArthur, C., Hagerman, A., & Robbins, C. T. (1991). Physiological strategies of mammalian herbivores against plant defenses. In R. T. Palo & C. T. Robbins (Eds.), Plant defenses against mammalian herbivory (pp. 103–114). Boca Raton: CRC Press.Google Scholar
  45. McArthur, C., Sanson, G. D., & Beal, A. M. (1995). Salivary proline-rich proteins in mammals: roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology, 21, 663–689.PubMedCrossRefGoogle Scholar
  46. McLean, S., & Duncan, A. J. (2006). Pharmacological perspectives on time detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. Journal of Chemical Ecology, 32, 1213–1228.PubMedCrossRefGoogle Scholar
  47. Mehansho, H. (1992). Tannin mediated induction of proline-rich protein synthesis. Journal of Agricultural and Food Chemistry, 40, 93–97.CrossRefGoogle Scholar
  48. Mehansho, H., Butler, L. G., & Carlson, D. M. (1987). Dietary tannins and salivary proline-rich proteins interactions, induction, and defense mechanisms. Annual Review of Nutrition, 7, 423–440.PubMedCrossRefGoogle Scholar
  49. Mehansho, H., Clements, S., Sheares, B. T., Smith, S., & Carlson, D. M. (1985). Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins. Journal of Biological Chemistry, 260, 4418–4423.PubMedGoogle Scholar
  50. Mehansho, H., Hagerman, M., Elements, S., Butler, L. G., Rogler, J., & Carlson, D. M. (1983). Modulation of protine-rich protein biosynthesis in rat parotid glands by sorghums with tannin levels. Proceedings of the National Academy of Sciences of the USA, 80, 3948–3952.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Meiser, H., Hagedorn, H. W., & Schulz, R. (2000). Pyrogallol poisoning of pigeons caused by acorns. Avian Diseases, 44, 205–209.PubMedCrossRefGoogle Scholar
  52. Milton, K. (1978). Behavioral adaptation to leaf-eating by the mantled howler monkey (Alouatta palliata). In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 535–551). Washington, DC: Smithsonian Institution Press.Google Scholar
  53. Milton, K. (1979). Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selected by generalist herbivores. American Naturalist, 114, 362–378.CrossRefGoogle Scholar
  54. Milton, K. (1981). Food choice and digestive strategies of two sympatric primate species. American Naturalist, 117, 496–505.CrossRefGoogle Scholar
  55. Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19, 513–548.CrossRefGoogle Scholar
  56. Mole, S., Butler, L. G., & Iason, G. (1990). Defense against dietary tannin in herbivores—a survey for proline-rich salivary proteins in mammals. Biochemical Systematics and Ecology, 18, 287–293.CrossRefGoogle Scholar
  57. Muenzer, J., Bildstein, C., Gleason, M., & Carlson, D. M. (1979). Properties of proline-rich proteins from parotid glands of isoproterenol-treated rats. Journal of Biological Chemistry, 254, 5629–5634.PubMedGoogle Scholar
  58. Niho, N., Shibutani, M., Tamura, T., Toyoda, K., Uneyama, C., Takahashi, N., & Hirose, M. (2001). Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food and Chemical Toxicology, 39, 1063–1070.PubMedCrossRefGoogle Scholar
  59. Norconk, M. (1996). Seasonal variation in diets of white-face and bearded sakis (Pithecia pithecia and Chiroptes satanas). In M. Norconk, A. Rosenberger, & P. Garber (Eds.), Adaptive radiations of neotropical primates (pp. 403–423). New York: Plenum Press.CrossRefGoogle Scholar
  60. Oppenheim, F. G., Kousvelari, E. E., & Troxler, R. F. (1979). Immunological cross-reactivity and sequence homology between salivary proline-rich proteins in human and macaque monkey (Macaca fascicularis) parotid saliva. Archives of Oral Biology, 24, 595–599.PubMedCrossRefGoogle Scholar
  61. Righini, N. (2014). Primate nutritional ecology: The role of food selection, energy intake, and nutrient balancing in Mexican black howler monkey (Alouatta pigra) foraging strategies. Ph.D. dissertation, University of Illinois at Urbana-Champaign.Google Scholar
  62. Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., & Schwartz, C. C. (1987). Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology, 68, 98–107.CrossRefGoogle Scholar
  63. Robinson, R., Kauffman, D. L., Waye, M. M. Y., Blum, M., Bennick, A., & Keller, P. J. (1989). Primary structure and possible origin of the nonglycosytated basic proline-rich protein of human submandibular/sublingual saliva. Biochemical Journal, 263, 497–503.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Rodríguez-Luna, E., García-Orduña, F., & Canales-Espinosa, D. (1993). Translocación del mono aullador Alouatta palliata. In A. Estrada, R. Rodríguez-Luna, R. López-Wilchis, & R. Coates-Estrada (Eds.), Estudios primatológicos en México (pp. 129–178). Xalapa: Universidad Veracruzana.Google Scholar
  65. Rothman, J. M., Dusinberre, K., & Pell, A. N. (2009). Condensed tannins in the diets of primates: a matter of methods? American Journal of Primatology, 71, 70–76.PubMedCrossRefGoogle Scholar
  66. Sabatini, L. M., Warner, T. F., Saitho, E., & Azen, E. A. (1989). Tissue distribution of RNAs for cystatins, histatins, statherin, and proline-rich salivary proteins in human and macaques. Journal of Dental Research, 68, 1138–1145.PubMedCrossRefGoogle Scholar
  67. Shimada, T. (2006). Salivary proteins as a defense against dietary tannins. Journal of Chemical Ecology, 32, 1149–1163.PubMedCrossRefGoogle Scholar
  68. Shimada, T., Nishii, E., & Saitoh, T. (2011). Interspecific differences in tannin intakes of forest-dwelling rodents in the wild revealed by a new method using fecal proline content. Journal of Chemical Ecology, 37, 1277–1284.PubMedCrossRefGoogle Scholar
  69. Shimada, T., Saitoh, T., Sasaki, E., Nishitani, Y., & Osawa, R. (2006). Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. Journal of Chemical Ecology, 32, 1165–1180.PubMedCrossRefGoogle Scholar
  70. Skopec, M. M., Hagerman, A. E., & Karasov, W. H. (2004). Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? Journal of Chemical Ecology, 30, 1679–1692.PubMedCrossRefGoogle Scholar
  71. Smith, A. H., Odenyo, A. A., Osuji, P. O., Wallig, M. A., et al. (2001). Evaluation of toxicity of Acacia angustissima in a rat bioassay. Animal Feed Science and Technology, 91, 41–57.CrossRefGoogle Scholar
  72. Steck, G., Leuthard, P., & Burk, R. R. (1980). Detection of basic proteins and low molecular weight peptides in polyacrylamide gels by formaldehyde fixation. Analytical Biochemistry, 107, 21–24.PubMedCrossRefGoogle Scholar
  73. Takemoto, H. (2003). Phytochemical determination for leaf food choice by wild chimpanzees in Guinea, Bossou. Journal of Chemical Ecology, 29, 2551–2573.PubMedCrossRefGoogle Scholar
  74. Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Oxford: Blackwell.Google Scholar
  75. Welker, B. J., König, W., Pietsch, M., & Adams, R. P. (2007). Feeding selectivity by mantled howler monkeys (Alouatta palliata) in relation to leaf secondary chemistry in Hymenaea courbaril. Journal of Chemical Ecology, 33, 1186–1196.PubMedCrossRefGoogle Scholar
  76. Yan, Q. Y., & Bennick, A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochemical Journal, 311, 341–347.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • F. Espinosa Gómez
    • 1
    • 5
  • Juan Santiago García
    • 2
  • Sergio Gómez Rosales
    • 3
  • Ian R. Wallis
    • 4
  • Colin A. Chapman
    • 5
    • 6
  • Jorge Morales Mávil
    • 1
  • Domingo Canales Espinosa
    • 1
  • Laura Hernández Salazar
    • 1
  1. 1.Instituto de NeuroetologíaUniversidad VeracruzanaXalapaMéxico
  2. 2.Instituto de Investigaciones BiológicasUniversidad VeracruzanaXalapaMéxico
  3. 3.Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y PecuariasAjuchitlánMéxico
  4. 4.Evolution, Ecology and Genetics, Research School of BiologyAustralian National UniversityCanberraAustralia
  5. 5.McGill School of Environment and Dept. of AnthropologyMcGill UniversityMontrealCanada
  6. 6.Wildlife Conservation SocietyBronxUSA

Personalised recommendations