Skip to main content

Advertisement

Log in

Howler Monkeys (Alouatta palliata mexicana) Produce Tannin-Binding Salivary Proteins

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Dietary tannins are ubiquitous in woody plants and may have serious negative effects on herbivores by inducing a loss of dietary protein and producing toxins if they are hydrolyzed in the gut. Many herbivorous mammals counter the negative effects of tannins through tannin-binding salivary proteins (TBSPs) that inactivate tannins by forming insoluble complexes and prevent them from interacting with other more valuable proteins. Howlers are the most folivorous New World primates and ingest foods with varying tannin content. We studied the presence of TBSPs in six wild mantled howlers (Alouatta palliata mexicana) immediately after capture and in captivity when fed on two diets composed of natural ingredients: a mixture of fruit and leaves or only leaves. Protein concentration was determined in whole saliva samples, followed by gel electrophoresis. We identified two protein bands of 17 and 25 kDa that have tannin-binding capacity. Although the monkeys ate almost twice as much condensed tannins in the leaf diet than in the fruits and leaves diet (7 vs. 4 g/d dry matter) the salivary protein concentration did not differ between the two diets (leaf diet: 3.29 ± SE 0.82 vs. fruit and leaves diet: 3.42 ± SE 0.62 mg/ml) and we found no additional protein bands in response to either diet. We suggest that the continuous expression of TBSPs is part of a dietary strategy that enables howlers to consume diets with variable tannin contents, thus partly explaining their dietary flexibility. Although the importance of salivary proteins to arboreal primates is broadly accepted, to our knowledge this is the first report of TBSPs in any Neotropical primate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ammar, H., López, S., Salem, A. Z. M., Bodas, R., & González, J. R. (2011). Effect of saliva from sheep that have ingested quebracho tannins on the in vitro rumen fermentation activity to digest tannin-containing shrubs. Animal Feed Science and Technology, 163(2011), 77–83.

    Article  CAS  Google Scholar 

  • Ann, D. K., & Lin, H. H. (1993). Macaque salivary proline-rich protein: structure, evolution, and expression. Critical Reviews in Oral Biology & Medicine, 4, 545–555.

    CAS  Google Scholar 

  • Aristizábal Borja, J. F. (2013). Estrategias de forrajeo y características nutricionales del mono aullador negro (Alouatta pigra) en un ambiente fragmentado. Master’s thesis, Instituto de Ecología, Xalapa, Veracruz, México.

  • Asquith, T. N., Mehansho, H., Rogler, J., Butler, L., & Carlson, D. M. (1985). Induction of proline-rich protein biosynthesis in salivary glands by tannins. FASEB Journal, 44, 1097.

    Google Scholar 

  • Austin, P. J., Suchar, L. A., Robbins, C. T., & Hagerman, A. E. (1989). Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology, 15, 1335–1347.

    Article  PubMed  CAS  Google Scholar 

  • Azen, E. A., & Maeda, N. (1988). Molecular genetics of human salivary proteins and their polymorphisms. In H. Harris & K. Hirschorn (Eds.), Advances in human genetics (pp. 141–199). New York: Plenum Press.

    Google Scholar 

  • Baumgarten, A., & Williamson, G. (2007). The distributions of howling monkeys (Alouatta pigra and Alouatta palliata) in southeastern Mexico and Central America. Primates. doi:10.1007/s10329-007-0049-y.

    PubMed  Google Scholar 

  • Beeley, J. A., Sweeney, D., Lindsay, J. C., Buchanan, M. I., Sarna, I., & Khoo, K. S. (1991). Sodium dodecyl sulphate polyacrylamide gel electrophoresis of human parotid salivary proteins. Electrophoresis, 12, 1032–1041.

    Article  PubMed  CAS  Google Scholar 

  • Bennick, A. (1982). Salivary proline-rich proteins. Molecular and Cellular Biochemistry, 45, 83–99.

    Article  PubMed  CAS  Google Scholar 

  • Bennick, A. (2002). Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, 13, 184–196.

    Article  Google Scholar 

  • Boze, H., Marlin, T., Durand, D., Perez, J., Vernhet, A., Canon, F., Sarni-Manchado, P., Cheynier, V., & Cabane, B. (2010). Proline-rich salivary proteins have extended conformations. Biophysical Journal, 99, 656–665.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clauss, M., Gehrke, J., Hatt, J. M., Dierenfeld, E. S., Flach, E. J., Hermes, R., Castell, J., Streich, W. J., & Fickel, J. (2005). Tannin-binding salivary proteins in three captive rhinoceros species. Comparative Biochemistry and Physiology A, 140, 67–72.

    Article  Google Scholar 

  • Cortés-Ortiz, L., Rylands, A. B., & Mittermeier, R. A. (2015). The taxonomy of howler monkeys: Integrating old and new knowledge from morphological and genetic studies. In M. Kowalewski, P. Garber, L. Cortés-Ortiz, B. Urbani, & D. Youlatos (Eds.), Howler monkeys. Developments in primatology: Progress and prospects. New York: Springer Science-Business Media.

    Google Scholar 

  • Crockett, C. (1998). Conservation biology of the genus Alouatta. International Journal of Primatology, 19, 549–578.

    Article  Google Scholar 

  • da Costa, G., Lamy, E. F., Silva, C., Andersen, J., Sales Baptista, E., & Coelho, A. V. (2008). Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins. Journal of Chemical Ecology, 34, 376–387.

    Article  PubMed  Google Scholar 

  • Dearing, M. D. (1997). Effects of Acomastylis rossi tannins on a mammalian herbivore, the North American pika. Ochotona princeps. Oecologia, 109, 122–131.

    Article  Google Scholar 

  • DeGabriel, J. L., Moore, B. D., Foley, W. J., & Johnson, C. N. (2009). The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology, 90, 711–719.

    Article  PubMed  Google Scholar 

  • Diario Oficial de la Federación. (1999). Norma Oficial Mexicana NOM-062-ZOO-1999, 22 de Agosto de 2001.

  • Domingo Balcells, C., & Veà Baró, J. J. (2009). Developmental stages in the howler monkey, subspecies Alouatta palliata mexicana: a new classification using age-sex categories. Neotropical Primates, 16, 1–8.

    Article  Google Scholar 

  • Espinosa Gómez, F. C., Gómez Rosales, S., Wallis, I. R., Canales Espinosa, D., & Hernández Salazar, L. T. (2013). Digestive strategies and food choice in mantled howler monkeys Alouatta palliata mexicana: bases of their dietary flexibility. Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology, 183(8), 1089–1100.

  • Fashing, P. J., Dierenfeld, E. S., Christopher, B., & Mowry, C. B. (2007). Influence of plant and soil chemistry on food selection, ranging patterns, and biomass of Colobus guereza in Kakamega Forest, Kenya. International Journal of Primatology, 28(3), 673–703.

    Article  Google Scholar 

  • Featherstone, W. R., & Rogler, J. C. (1975). Influence of tannins on the utilization of sorghum grain by rats and chicks. Nutrition Reports International, 11, 491–497.

    Google Scholar 

  • Fickel, J., Göritz, F., Joest, B. A., Hildebrandt, T., Hofmann, R. R., & Breves, G. (1998). Analysis of parotid and mixed saliva in roe deer (Capreolus capreolus l.). Journal of Comparative Physiology B: Biological Sciences, 168, 257–264.

    Article  CAS  Google Scholar 

  • Fickel, J., Pitra, C., Joest, B. A., & Hofmann, R. R. (1999). A novel method to evaluate the relative tannin-binding capacities of salivary proteins. Comparative Biochemistry and Physiology, 122C, 225–229.

    CAS  Google Scholar 

  • Gho, F., Penaneira, A., & Lopez-Solis, R. O. (2007). Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth. Journal of Cellular Biochemistry, 100, 487–498.

    Article  PubMed  CAS  Google Scholar 

  • Glander, K. E. (1978). Howling monkey feeding behavior and plant secondary compounds: A study of strategies. In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 561–574). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Glander, K. E. (1981). Feeding patterns in mantled howler monkeys. In A. Kamil & T. D. Sargent (Eds.), Foraging behavior: Ecological, ethological, and psychological approaches (pp. 231–257). New York: Garland Press.

    Google Scholar 

  • Glander, K. E. (1982). The impact of plant secondary compounds on primate feeding behavior. Yearbook of Physical Anthropology, 25, 1–18.

    Article  Google Scholar 

  • Guengerich, F. P. (2004). Cytochrome p450: what have we learned and what are the future issues? Drug Metabolism Reviews, 36, 159–197.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman, A. E. (2011). The tannin handbook. USDA (United States Department of Agriculture) http://www.users.miamioh.edu/hagermae/.

  • Hagerman, A. E., & Robbins, C. T. (1987). Implication of soluble tannin-protein complexes for tannin analysis and plant defense mechanisms. Chemical Ecology, 13, 1243–1259.

    Article  CAS  Google Scholar 

  • Hartree, E. F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422–427.

    Article  PubMed  CAS  Google Scholar 

  • Hill, W. C. O. (1972). Evolutionary biology of the primates. New York: Academic Press.

    Google Scholar 

  • Hoffmann, U., & Kroemer, H. K. (2004). The ABC transporters MDR1 and MRP2: multiple functions in disposition of xenobiotics and drug resistance. Drug Metabolism Reviews, 36, 669–701.

    Article  PubMed  CAS  Google Scholar 

  • IUCN. (1998). IUCN/SSC Guidelines for re-introductions. Prepared by the IUCN/SSC re-introduction specialist group. Gland: IUCN.

    Google Scholar 

  • Kauffman, D. L., Bennick, A., Blim, M., & Keller, P. J. (1991). Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual. Biochemistry, 30, 3351–3356.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lamy, E., da Costa, G., Santos, R., Capela e Silva, F., Potes, J., Pereira, A., Coelho, A. V., & Sales Baptista, E. (2010a). Effect of condensed tannins ingestion in sheep and goat parotid saliva proteome. Journal of Animal Physiology and Animal Nutrition, 95, 304–312.

    Article  PubMed  Google Scholar 

  • Lamy, E., Graca, G., da Costa, G., Franco, C., Capela e Silva, F., Sales Baptista, C., & Varela Coelho, A. (2010b). Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Science, 8, 65.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leitao, G. G., Mensor, L. L., Amaral, L. F., Floriano, N., Limeira, V. L., Fde Menezes, S., & Leitão, S. G. (1999). Phenolic content and antioxidant activity: A study on plants eaten by a group of howler monkeys (Alouatta fusca). In G. G. Goss, W. R. Hemingway, T. Yoshida, & S. J. Branham (Eds.), Plant polyphenols 2: Chemistry, biology, pharmacology, ecology. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Mandel, I. D., Thompson, R. H., & Ellison, S. A. (1965). Studies on the mucoproteins of human parotid saliva. Archives of Oral Biology, 10, 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Mau, M., de Almeida, A. M., Coelho, A. V., & Südekum, K. H. (2011). First identification of tannin-binding proteins in saliva of Papio hamadryas using MS/MS mass spectrometry. American Journal of Primatology, 73, 896–902.

    Article  PubMed  CAS  Google Scholar 

  • Mau, M., Südekum, K. H., Johann, A., Sliwa, A., & Kaiser, T. M. (2009). Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. American Journal of Primatology, 71, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • McArthur, C., Hagerman, A., & Robbins, C. T. (1991). Physiological strategies of mammalian herbivores against plant defenses. In R. T. Palo & C. T. Robbins (Eds.), Plant defenses against mammalian herbivory (pp. 103–114). Boca Raton: CRC Press.

    Google Scholar 

  • McArthur, C., Sanson, G. D., & Beal, A. M. (1995). Salivary proline-rich proteins in mammals: roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology, 21, 663–689.

    Article  PubMed  CAS  Google Scholar 

  • McLean, S., & Duncan, A. J. (2006). Pharmacological perspectives on time detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. Journal of Chemical Ecology, 32, 1213–1228.

    Article  PubMed  CAS  Google Scholar 

  • Mehansho, H. (1992). Tannin mediated induction of proline-rich protein synthesis. Journal of Agricultural and Food Chemistry, 40, 93–97.

    Article  CAS  Google Scholar 

  • Mehansho, H., Butler, L. G., & Carlson, D. M. (1987). Dietary tannins and salivary proline-rich proteins interactions, induction, and defense mechanisms. Annual Review of Nutrition, 7, 423–440.

    Article  PubMed  CAS  Google Scholar 

  • Mehansho, H., Clements, S., Sheares, B. T., Smith, S., & Carlson, D. M. (1985). Induction of proline-rich glycoprotein synthesis in mouse salivary glands by isoproterenol and by tannins. Journal of Biological Chemistry, 260, 4418–4423.

    PubMed  CAS  Google Scholar 

  • Mehansho, H., Hagerman, M., Elements, S., Butler, L. G., Rogler, J., & Carlson, D. M. (1983). Modulation of protine-rich protein biosynthesis in rat parotid glands by sorghums with tannin levels. Proceedings of the National Academy of Sciences of the USA, 80, 3948–3952.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meiser, H., Hagedorn, H. W., & Schulz, R. (2000). Pyrogallol poisoning of pigeons caused by acorns. Avian Diseases, 44, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Milton, K. (1978). Behavioral adaptation to leaf-eating by the mantled howler monkey (Alouatta palliata). In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 535–551). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Milton, K. (1979). Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selected by generalist herbivores. American Naturalist, 114, 362–378.

    Article  CAS  Google Scholar 

  • Milton, K. (1981). Food choice and digestive strategies of two sympatric primate species. American Naturalist, 117, 496–505.

    Article  Google Scholar 

  • Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19, 513–548.

    Article  Google Scholar 

  • Mole, S., Butler, L. G., & Iason, G. (1990). Defense against dietary tannin in herbivores—a survey for proline-rich salivary proteins in mammals. Biochemical Systematics and Ecology, 18, 287–293.

    Article  CAS  Google Scholar 

  • Muenzer, J., Bildstein, C., Gleason, M., & Carlson, D. M. (1979). Properties of proline-rich proteins from parotid glands of isoproterenol-treated rats. Journal of Biological Chemistry, 254, 5629–5634.

    PubMed  CAS  Google Scholar 

  • Niho, N., Shibutani, M., Tamura, T., Toyoda, K., Uneyama, C., Takahashi, N., & Hirose, M. (2001). Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food and Chemical Toxicology, 39, 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Norconk, M. (1996). Seasonal variation in diets of white-face and bearded sakis (Pithecia pithecia and Chiroptes satanas). In M. Norconk, A. Rosenberger, & P. Garber (Eds.), Adaptive radiations of neotropical primates (pp. 403–423). New York: Plenum Press.

    Chapter  Google Scholar 

  • Oppenheim, F. G., Kousvelari, E. E., & Troxler, R. F. (1979). Immunological cross-reactivity and sequence homology between salivary proline-rich proteins in human and macaque monkey (Macaca fascicularis) parotid saliva. Archives of Oral Biology, 24, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Righini, N. (2014). Primate nutritional ecology: The role of food selection, energy intake, and nutrient balancing in Mexican black howler monkey (Alouatta pigra) foraging strategies. Ph.D. dissertation, University of Illinois at Urbana-Champaign.

  • Robbins, C. T., Hanley, T. A., Hagerman, A. E., Hjeljord, O., Baker, D. L., & Schwartz, C. C. (1987). Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology, 68, 98–107.

    Article  CAS  Google Scholar 

  • Robinson, R., Kauffman, D. L., Waye, M. M. Y., Blum, M., Bennick, A., & Keller, P. J. (1989). Primary structure and possible origin of the nonglycosytated basic proline-rich protein of human submandibular/sublingual saliva. Biochemical Journal, 263, 497–503.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-Luna, E., García-Orduña, F., & Canales-Espinosa, D. (1993). Translocación del mono aullador Alouatta palliata. In A. Estrada, R. Rodríguez-Luna, R. López-Wilchis, & R. Coates-Estrada (Eds.), Estudios primatológicos en México (pp. 129–178). Xalapa: Universidad Veracruzana.

    Google Scholar 

  • Rothman, J. M., Dusinberre, K., & Pell, A. N. (2009). Condensed tannins in the diets of primates: a matter of methods? American Journal of Primatology, 71, 70–76.

    Article  PubMed  Google Scholar 

  • Sabatini, L. M., Warner, T. F., Saitho, E., & Azen, E. A. (1989). Tissue distribution of RNAs for cystatins, histatins, statherin, and proline-rich salivary proteins in human and macaques. Journal of Dental Research, 68, 1138–1145.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T. (2006). Salivary proteins as a defense against dietary tannins. Journal of Chemical Ecology, 32, 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Nishii, E., & Saitoh, T. (2011). Interspecific differences in tannin intakes of forest-dwelling rodents in the wild revealed by a new method using fecal proline content. Journal of Chemical Ecology, 37, 1277–1284.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Saitoh, T., Sasaki, E., Nishitani, Y., & Osawa, R. (2006). Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. Journal of Chemical Ecology, 32, 1165–1180.

    Article  PubMed  CAS  Google Scholar 

  • Skopec, M. M., Hagerman, A. E., & Karasov, W. H. (2004). Do salivary proline-rich proteins counteract dietary hydrolyzable tannin in laboratory rats? Journal of Chemical Ecology, 30, 1679–1692.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. H., Odenyo, A. A., Osuji, P. O., Wallig, M. A., et al. (2001). Evaluation of toxicity of Acacia angustissima in a rat bioassay. Animal Feed Science and Technology, 91, 41–57.

    Article  CAS  Google Scholar 

  • Steck, G., Leuthard, P., & Burk, R. R. (1980). Detection of basic proteins and low molecular weight peptides in polyacrylamide gels by formaldehyde fixation. Analytical Biochemistry, 107, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto, H. (2003). Phytochemical determination for leaf food choice by wild chimpanzees in Guinea, Bossou. Journal of Chemical Ecology, 29, 2551–2573.

    Article  PubMed  CAS  Google Scholar 

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites. Oxford: Blackwell.

    Google Scholar 

  • Welker, B. J., König, W., Pietsch, M., & Adams, R. P. (2007). Feeding selectivity by mantled howler monkeys (Alouatta palliata) in relation to leaf secondary chemistry in Hymenaea courbaril. Journal of Chemical Ecology, 33, 1186–1196.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Q. Y., & Bennick, A. (1995). Identification of histatins as tannin-binding proteins in human saliva. Biochemical Journal, 311, 341–347.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by CONACYT-FOMIX 109499 and by CONACYT I010/458/2013 C-703/2013. F. E. Gómez was supported by CONACYT Scholarship 171093. We especially appreciate the work and dedication of several field assistants: Gildardo Castañeda, Antonio Jauregui, Rubén Mateo, and biologist Denedi García. F. E. Gómez thanks Dr. Fausto Rojas for help with laboratory techniques and Dr. Javier Hermida for his support during the capture of animals. We are very grateful to Dr. Ken Glander, Dr. Ellen Dierenfeld, and Dr. Jessica Rothman for the very helpful comments that improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hernández Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa Gómez, F., Santiago García, J., Gómez Rosales, S. et al. Howler Monkeys (Alouatta palliata mexicana) Produce Tannin-Binding Salivary Proteins. Int J Primatol 36, 1086–1100 (2015). https://doi.org/10.1007/s10764-015-9879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-015-9879-4

Keywords

Navigation