Skip to main content

Advertisement

Log in

The Promise and Practicality of Population Genomics Research with Endangered Species

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Recent technological advances have dramatically reduced the cost of DNA sequencing. In addition, these methods require lower DNA quantities and qualities than did the previous generation of molecular techniques. As a result, genomic-scale studies of natural populations of endangered species, including those using noninvasively collected samples, are increasingly feasible. Such studies have the potential to advance our understanding of behavior, demography, evolutionary ecology, biogeography, and population history, and to contribute to the prioritization of conservation efforts. I point to a number of salient examples. However, there are also some current limitations and challenges associated with this scale of population genomics research in nonhuman, nonmodel species. Here, I describe the practicalities of the present state of this research while providing what is intended to be a straightforward walkthrough of the technology and methods involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., Song, X., et al. (2007). Direct selection of human genomic loci by microarray hybridization. Nature Methods, 4(11), 903–905.

    Google Scholar 

  • Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10), 697–709.

    Article  CAS  PubMed  Google Scholar 

  • Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal, 7(7), 1344–1353.

    Google Scholar 

  • Arandjelovic, M., Guschanski, K., Schubert, G., Harris, T. R., Thalmann, O., Siedel, H., et al. (2009). Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Molecular Ecology Resources, 9, 28–36.

    Google Scholar 

  • Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3(10), e3376.

    Google Scholar 

  • Bell, O., Tiwari, V. K., Thoma, N. H., & Schubeler, D. (2011). Determinants and dynamics of genome accessibility. Nature Reviews Genetics, 12(8), 554–564.

    Article  CAS  PubMed  Google Scholar 

  • Bergey, C. M., Pozzi, L., Disotell, T. R., & Burrell, A. S. (2013). A new method for genome-wide marker development and genotyping holds great promise for molecular primatology. International Journal of Primatology, 34(2), 303–314.

    Article  Google Scholar 

  • Bock, C. (2012). Analysing and interpreting DNA methylation data. Nature Reviews Genetics, 13(10), 705–719.

    Article  CAS  PubMed  Google Scholar 

  • Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., et al. (2009). Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325, 318–321.

  • Buchan, J. C., Archie, E. A., van Horn, R. C., Moss, C. J., & Alberts, S. C. (2005). Locus effects and sources of error in noninvasive genotyping. Molecular Ecology Notes, 5, 680–683.

    Article  CAS  Google Scholar 

  • Burbano, H. A., Hodges, E., Green, R. E., Briggs, A. W., Krause, J., Meyer, M., et al. (2010). Targeted investigation of the Neandertal genome by array-based sequence capture. Science, 328(5979), 723–725.

    Google Scholar 

  • Degnan, P. H., Pusey, A. E., Lonsdorf, E. V., Goodall, J., Wroblewski, E. E., Wilson, M. L., et al. (2012). Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proceedings of the National Academy of Sciences of the USA, 109(32), 13034–13039.

    Google Scholar 

  • Ekblom, R., Farrell, L. L., Lank, D. B., & Burke, T. (2012). Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff. Ecology & Evolution, 2(10), 2485–2505.

    Article  Google Scholar 

  • Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, N. A., Rung, J., Brazma, A., & Marioni, J. C. (2012). Tools for mapping high-throughput sequencing data. Bioinformatics, 28(24), 3169–3177.

    Article  CAS  PubMed  Google Scholar 

  • Gayral, P., Weinert, L., Chiari, Y., Tsagkogeorga, G., Ballenghien, M., & Galtier, N. (2011). Next-generation sequencing of transcriptomes: A guide to RNA isolation in nonmodel animals. Molecular Ecology Resources, 11(4), 650–661.

    Article  CAS  PubMed  Google Scholar 

  • George, R. D., McVicker, G., Diederich, R., Ng, S. B., MacKenzie, A. P., Swanson, W. J., et al. (2011). Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Research, 21(10), 1686–1694.

    Google Scholar 

  • Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Molecular Ecology Resources, 11(5), 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., Brockman, W., et al. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182–189.

    Google Scholar 

  • Guschanski, K., Krause, J., Sawyer, S., Valente, L. M., Bailey, S., Finstermeier, K., et al. (2013). Next-generation museomics disentangles one of the largest primate radiations. Systematic Biology, 62(4), 539–554.

    Google Scholar 

  • Hohenlohe, P. A., Day, M. D., Amish, S. J., Miller, M. R., Kamps-Hughes, N., Boyer, M. C., et al. (2013). Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Molecular Ecology, 22(11), 3002–3013.

    Google Scholar 

  • International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  Google Scholar 

  • Jennings, T. N., Knaus, B. J., Mullins, T. D., Haig, S. M., & Cronn, R. C. (2011). Multiplexed microsatellite recovery using massively parallel sequencing. Molecular Ecology Resources, 11(6), 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  • Kohn, M. H. (2010). Noninvasive genome sampling in chimpanzees. Molecular Ecology, 19(24), 5328–5331.

    Article  PubMed  Google Scholar 

  • Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., et al. (2012). Experimental and analytical tools for studying the human microbiome. Nature Reviews Genetics, 13(1), 47–58.

    Google Scholar 

  • Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Segurel, L., Venkat, A., et al. (2012). Revisiting an old riddle: What determines genetic diversity levels within species? PLoS Biology, 10(9), e1001388.

    Google Scholar 

  • Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

    Google Scholar 

  • Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinformatics, 11(5), 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.

    Article  CAS  PubMed  Google Scholar 

  • Maricic, T., Whitten, M., & Paabo, S. (2010). Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One, 5(11), e14004.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mason, V. C., Li, G., Helgen, K. M., & Murphy, W. J. (2011). Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Research, 21(10), 1695–1704.

    Article  CAS  PubMed  Google Scholar 

  • McKelvey, K. S., & Schwartz, M. K. (2004). Genetic errors associated with population estimation using non-invasive molecular tagging: Problems and new solutions. Journal of Wildlife Management, 68, 439–448.

    Article  Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303.

    Google Scholar 

  • Miller, W., Hayes, V. M., Ratan, A., Petersen, D. C., Wittekindt, N. E., Miller, J., et al. (2011). Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proceedings of the National Academy of Sciences of the USA, 108(30), 12348–12353.

  • Miller, W., Schuster, S. C., Welch, A. J., Ratan, A., Bedoya-Reina, O. C., Zhao, F., et al. (2012). Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proceedings of the National Academy of Sciences of the USA, 109(36), E2382–E2390.

    Google Scholar 

  • Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics, 12(6), 443–451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noonan, J. P., Coop, G., Kudaravalli, S., Smith, D., Krause, J., Alessi, J., et al. (2006). Sequencing and analysis of Neanderthal genomic DNA. Science, 314(5802), 1113–1118.

    Google Scholar 

  • Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., & Hedrick, P. W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics, 26(4), 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Parga, J. A., Sauther, M. L., Cuozzo, F. P., Jacky, I. A., & Lawler, R. R. (2012). Evaluating ring-tailed lemurs (Lemur catta) from southwestern Madagascar for a genetic population bottleneck. American Journal of Physical Anthropology, 147(1), 21–29.

    Article  PubMed  Google Scholar 

  • Peery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Beer, E., Robinson, S., et al. (2012). Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology, 21(14), 3403–3418.

    Google Scholar 

  • Perry, G. H., Louis, E. E., Jr., Ratan, A., Bedoya-Reina, O. C., Burhans, R. C., Lei, R., et al. (2013). Aye-aye population genomic analyses highlight an important center of endemism in northern Madagascar. Proceedings of the National Academy of Sciences of the USA, 110(15), 5823–5828.

    Google Scholar 

  • Perry, G. H., Marioni, J. C., Melsted, P., & Gilad, Y. (2010). Genomic-scale capture and sequencing of endogenous DNA from feces. Molecular Ecology, 19(24), 5332–5344.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perry, G. H., Melsted, P., Marioni, J. C., Wang, Y., Bainer, R., Pickrell, J. K., et al. (2012a). Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Research, 22(4), 602–610.

  • Perry, G. H., Reeves, D., Melsted, P., Ratan, A., Miller, W., Michelini, K., et al. (2012b). A Genome sequence resource for the aye-aye (Daubentonia madagascariensis), a nocturnal lemur from Madagascar. Genome Biology and Evolution, 4(2), 126–135.

  • Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology, 21(8), 1931–1950.

    Article  CAS  PubMed  Google Scholar 

  • Quemere, E., Amelot, X., Pierson, J., Crouau-Roy, B., & Chikhi, L. (2012). Genetic data suggest a natural prehuman origin of open habitats in northern Madagascar and question the deforestation narrative in this region. Proceedings of the National Academy of Sciences of the USA, 109(32), 13028–13033.

    Article  CAS  PubMed  Google Scholar 

  • Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794–1805.

    Article  CAS  PubMed  Google Scholar 

  • St. John, J., & Quinn, T. W. (2008). Rapid capture of DNA targets. Biotechniques, 44(2), 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, C. C., Putnam, A. S., Hoeck, P. E. A., & Ryder, O. A. (2013). Conservation genomics of threatened animal species. Annual Review of Animal Biosciences, 1, 261–281.

    Article  Google Scholar 

  • Taberlet, P., Waits, L. P., & Luikart, G. (1999). Noninvasive genetic sampling: Look before you leap. Trends in Ecology & Evolution, 14(8), 323–327.

    Article  Google Scholar 

  • The 1000 Genomes Project Consortium. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.

    Article  PubMed Central  Google Scholar 

  • Tung, J., Primus, A., Bouley, A. J., Severson, T. F., Alberts, S. C., & Wray, G. A. (2009). Evolution of a malaria resistance gene in wild primates. Nature, 460(7253), 388–391.

    CAS  PubMed  Google Scholar 

  • Van Bortle, K., & Corces, V. G. (2012). Nuclear organization and genome function. Annual Review of Cell and Developmental Biology, 28, 163–187.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao, S., Zheng, P., Dong, S., Zhan, X., Wu, Q., Guo, X., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics, 45(1), 67–71.4.

    Google Scholar 

Download references

Acknowledgments

I thank two reviewers and the editors for their constructive comments and suggestions. The genomic methods research in the Perry lab mentioned in the article has been funded by the Penn State University College of The Liberal Arts, and the Penn State Huck Institutes of the Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George H. Perry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, G.H. The Promise and Practicality of Population Genomics Research with Endangered Species. Int J Primatol 35, 55–70 (2014). https://doi.org/10.1007/s10764-013-9702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9702-z

Keywords

Navigation