International Journal of Primatology

, Volume 33, Issue 4, pp 845–859 | Cite as

Do Nematode Infections of Red Colobus (Procolobus rufomitratus) and Black-and-White Colobus (Colobus guereza) on Humanized Forest Edges Differ from Those on Nonhumanized Forest Edges?



Forested edges, especially those that border humanized landscapes, provide opportunities for nonhuman primates and people to interact, and such interactions are predicted to alter disease dynamics. Given the rapid expansion of edge habitats globally, understanding changes occurring on edges is important in evaluating primate behavioral ecology and developing conservation plans. Our research investigates predictions concerning how gastrointestinal parasite and stress levels (cortisol) in red colobus and black-and-white colobus (Procolobus rufomitratus; Colobus guereza) in Kibale National Park, Uganda, differ between humanized and nonhumanized forest edges. We found Trichuris sp., an unidentified strongyle, and Strongyloides sp. in the fecal samples. Results did not generally support our expectation that humanized forest edges increase parasite infection and, counter to what we predicted, fecal cortisol did not differ between habitats, suggesting that proximity to edges and/or to humans did not result in increased stress. We conclude that broad habitat classifications, e.g., “humanized,” may be too general to identify consistent differences in parasite infection, as other factors, specific to the parasite (e.g., life cycled), host (e.g., immune systems strength), or environment (e.g., moisture level), likely also play important roles.


Colobus Cortisol Edge Kibale National Park, Uganda Parasite 



Funding was provided by the Natural Science and Engineering Council of Canada, Primate Conservation Inc., and Sigma Xi. Makerere Biological Field Station, the Uganda National Science and Technology research council, and the Uganda Wildlife Authority granted us permission to conduct this research and the research complied with McGill University’s Animal Use Protocol. We thank Dwight Bowman and Ellis Greiner for help with the identification of parasites and Tania Saj, Toni Ziegler, and Dan Witter for help in cortisol collection/analysis. The research was improved by comments from Lauren Chapman, Jan Gogarten, Carolyn Hall, Mitchell Irwin, Tania Saj, Tamaini Snaith, and the anonymous reviewers.


  1. Agresti, A. (1996). An introduction to categorcial data analysis. New York: John Wiley & Sons.Google Scholar
  2. Appleton, C. C., & Brain, C. (1995). Gastrointestinal parasites of Papio cynocephalus ursinus living in the Central Namib Desert, Namiba. African Journal of Ecology, 33, 257–268.CrossRefGoogle Scholar
  3. Black, P. H. (1994). Central nervous system-immune system interactions – psychoneuroendocrinology of stress and its immune consequences. Antimicrobial Agents and Chemotherapy, 38, 1–6.PubMedCrossRefGoogle Scholar
  4. Bowman, D. D. (1999). Georgis' parasitology for veterinarians. St. Louis: Elsevier.Google Scholar
  5. Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583.PubMedCrossRefGoogle Scholar
  6. Chapman, C. A., Chapman, L. J., Naughton-Treves, L., Lawes, M. J., & McDowell, L. R. (2004). Predicting folivorous primate abundance: validation of a nutritional model. American Journal of Primatology, 62, 55–69.PubMedCrossRefGoogle Scholar
  7. Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions? Evolutionary Anthropology, 14, 134–144.CrossRefGoogle Scholar
  8. Chapman, C. A., & Lambert, J. E. (2000). Habitat alteration and the conservation of African primates: case study of Kibale National Park, Uganda. American Journal of Primatology, 50, 169–185.PubMedCrossRefGoogle Scholar
  9. Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T., & Austad, K. M. (2006a). Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. American Journal of Primatology, 68, 397–409.CrossRefGoogle Scholar
  10. Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006b). Do nutrition, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–534.CrossRefGoogle Scholar
  11. Chapman, C. A., Struhsaker, T. T., Skorupa, J. P., Snaith, T. V., & Rothman, J. M. (2010). Understanding long-term primate community dynamics: implications of forest change. Ecological Applications, 20, 179–191.PubMedCrossRefGoogle Scholar
  12. Cheng, T. C. (1973). General parasitology. New York: Academic Press.Google Scholar
  13. Chomel, B. B., Belotto, A., & Meslin, F. X. (2007). Wildlife, exotic pets and emerging zoonoses. Emerging Infectious Diseases, 13, 6–11.PubMedCrossRefGoogle Scholar
  14. Chourchamp, F., Yoccoz, N. G., Artois, M., & Pontier, D. (1998). At-risk individuals in feline immunodeficiency virus epidemiology; evidence from a multivariate approach in a natural population of domestic cats (Felis catus). Epidemiology and Infection, 121, 227–236.CrossRefGoogle Scholar
  15. Chu, F. L. E., & Volety, A. K. (1997). Disease processes of the parasite Perkinusus marinus in eastern oyster Crassostrea virginica: minimum does of infection initiation, and interaction of temperature, salinity and infective cell does. Disease of Aquatic Organisms, 28, 61–68.CrossRefGoogle Scholar
  16. Coe, C. L., & Erickson, C. M. (1997). Stress decreases lymphocyte cytolytic activity in the young monkey even after blockade of steroid and opiate hormone receptors. Developmental Psychobiology, 30, 1–10.PubMedCrossRefGoogle Scholar
  17. Collias, N., & Southwick, C. (1952). A field study of population density and social organization in howling monkeys. Proceedings of the National Academy of Sciencesof the USA, 96, 143–156.Google Scholar
  18. Coop, R. L., & Holmes, P. H. (1996). Nutrition and parasite interaction. International Journal of Parasitology, 26, 951–962.PubMedCrossRefGoogle Scholar
  19. de Gruijter, J. M., Gasser, R. B., Polderman, A. M., Asigri, V., & Dijkshoorn, L. (2005). High resolution DNA fingerprinting by AFLP to study the genetic variation among Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana. Parasitology, 130, 229–237.PubMedCrossRefGoogle Scholar
  20. de Gruijter, J. M., Ziem, J., Verweij, J. J., Polderman, A. M., & Gasser, R. B. (2004). Genetic substructuring within Oesophagostomum bifurcum (Nematoda) from human and non-human primates from Ghana based on random amplified polymorphic DNA analysis. American Journal of Tropical Medicine and Hygiene, 71, 227–233.PubMedGoogle Scholar
  21. Despommier, D. D., Gwazda, R. W., & Hotez, P. J. (1995). Parasitic diseases. New York: Springer-Verlag.CrossRefGoogle Scholar
  22. Ekanayake, D. K., Arulkanthan, A., Horadagoda, N. U., Sanjeevani, G. K. M., Kieft, R., Gunatilake, S., & Dittus, W. P. J. (2006). Prevalence of Cryptosporidium and other enteric parasites among wild non-human primates in Polonnaruwa, Sri Lanka. American Journal of Tropical Medicine and Hygiene, 74, 322–329.PubMedGoogle Scholar
  23. Ferber, D. (2000). Human diseases threatens great apes. Science, 289, 1277–1278.PubMedCrossRefGoogle Scholar
  24. Ganzhorn, J. U. (1995). Low-level forest disturbance effects on primary production, leaf chemistry, and lemur populations. Ecology, 76, 2048–2096.CrossRefGoogle Scholar
  25. Garcia, L. S. (1999). Practical guide to diagnostic parasitology. Washington, DC: ASM Press.Google Scholar
  26. Gasser, R. B., de Gruijter, J. M., & Polderman, A. M. (2009). The utility of molecular methods for elucidating primate-pathogen relationships the Oesophagostomum bifurcum example. In M. A. Huffman & C. A. Chapman (Eds.), Primate parasite ecology: the dynamics and study of host-parasite relationships (pp. 47–62). Cambridge: Cambridge University Press.Google Scholar
  27. Gillespie, S. H. (2001). Intestinal nematodes. In S. H. Gillespie & R. D. Pearson (Eds.), Principles and practice of clinical parasitology (pp. 561–583). New York: John Wiley & Sons.CrossRefGoogle Scholar
  28. Gillespie, T. R., Greiner, E. C., & Chapman, C. A. (2005). Gastrointestinal parasites of the colobus monkeys of Uganda. Journal of Parasitology, 91, 569–573.PubMedCrossRefGoogle Scholar
  29. Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Wheeler, E., Estoff, E. L., & Chapman, C. A. (2007). Patterns of gastrointestinal bacterial exchange between chimpanzees and humans involved in research and tourism in western Uganda. Biological Conservation, 135, 511–517.CrossRefGoogle Scholar
  30. Greger, M. (2007). The human/animal interface: emergence and resurgence of zoonotic infectious diseases. Critical Reviews in Microbiology, 33, 243–299.PubMedCrossRefGoogle Scholar
  31. Greiner, E. C., & McIntosh, A. (2009). Collection methods and diagnostic procedures for primate parasitology. In M. A. Huffman & C. A. Chapman (Eds.), Primate parasite ecology: The dynamics and study of host-parasite relationships (pp. 3–28). Cambridge: Cambridge University Press.Google Scholar
  32. Gulland, F. M. D. (1992). The role of nematode parasites in Soay sheep (Ovis aries L.) mortality during a population crash. Parasitology Research, 105, 493–503.CrossRefGoogle Scholar
  33. Harris, T. R., & Chapman, C. A. (2007). Variation in the diet and ranging behavior of black-and-white colobus monkeys: implications for theory and conservation. Primates, 28, 208–221.CrossRefGoogle Scholar
  34. Hudson, P. J. (1986). The effect of a parasitic nematode on the breeding population of red grouse. Journal of Animal Ecology, 55, 85–92.CrossRefGoogle Scholar
  35. Hudson, P. J., Dobson, A. P., & Newborn, D. (1992). Do parasites make prey vulnerable to predation: red grouse and parasites. Journal of Animal Ecology, 61, 681–692.CrossRefGoogle Scholar
  36. Jokela, J., Dybdahl, M. F., & Lively, C. M. (1999). Habitat-specific variation in life-history traits, clonal population structure and parasitism in a freshwater snail (Potamopyrgus antipodarum). Journal of Evolutionary Biology, 12, 350–360.CrossRefGoogle Scholar
  37. Kling, A., Lloyd, R., & Tachiki, K. (1992). Stress of social separation on immune function and brain neurotransmitters in cebus monkey (Cebus apella). Ontogenetic and Phylogenetic Mechanisms of Neuroimmunomodulation, 650, 257–261.Google Scholar
  38. Larsen, M. N., & Roepstorff, A. (1999). Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology, 1999, 209–220.CrossRefGoogle Scholar
  39. Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the eastern United States. Biological Conservation, 66, 185–194.CrossRefGoogle Scholar
  40. MacKenzie, C., Chapman, C. A., & Sengupta, R. (2011). Spatial patterns of illegal resource extraction in Kibale National Park, Uganda. Environmental Conservation, 39, 8–50.Google Scholar
  41. Milton, K. (1996). Effects of bot fly (Alouattamyia baeri) parasitism on a free-ranging howler (Alouatta palliata) population in Panama. Journal of Zoological Society of London, 239, 39–63.CrossRefGoogle Scholar
  42. Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130, 546–550.PubMedCrossRefGoogle Scholar
  43. Mulley, B. G., & Unruh, J. D. (2004). The role of off-farm employment in tropical forest conservation: labor, migration, and small holder attitudes towards land in Western Uganda. Journal of Environmental Management, 71, 193–205.PubMedCrossRefGoogle Scholar
  44. Munger, J. C., & Karasov, W. H. (1989). Subleathal parasites and host energy budgets: tapeworm infection in white-footed mice. Ecology, 70, 904–921.CrossRefGoogle Scholar
  45. Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution, 10, 58–62.PubMedCrossRefGoogle Scholar
  46. Naughton-Treves, L. (1997). Farming the forest edge: vulnerable places and people around Kibale National Park, Uganda. Geographical Review, 87, 27–49.CrossRefGoogle Scholar
  47. Naughton, L., Alix-Garcia, J., & Chapman, C. A. (2011). A decade of forest loss and economic growth around Kibale National Park, Uganda: lessons for poverty reduction and biodiversity conservation. Proceedings of the National Academy of Sciences of the USA, 108, 13919–13924.CrossRefGoogle Scholar
  48. Ooi, H. K., Tenora, F., Itoh, K., & Kamiya, M. (1993). Comparative study of Trichuris trichiura from nonhuman primates and from man, and their differences with T. suis. Journal of Veterinary Medical Science, 55, 363–366.PubMedCrossRefGoogle Scholar
  49. Padgett, D. A., & Glaser, R. (2003). How stress influences the immune response. Trends in Immunology, 24, 444–448.PubMedCrossRefGoogle Scholar
  50. Ravasi, D. F. C. (2009). Gastrointestinal parasite infections in chacma baboons (Papio h. ursinus) of the Cape Penninsula, South Africa: The influence of individual, troop, and anthropogenic factors. D. Phil. thesis, University of Capetown.Google Scholar
  51. Riggs, M. R., Haroldson, K. J., & Hanson, M. A. (2010). Analysis of covariance models for data from observational field studies. The Journal of Wildlife Management, 72, 34–43.CrossRefGoogle Scholar
  52. Rothman, J. M., Pell, A. N., & Bowman, D. D. (2008). Host-parasite ecology of the helminths in mountain gorillas. Journal of Parasitology, 94, 834–840.PubMedCrossRefGoogle Scholar
  53. Snaith, T. V., Chapman, C. A., Rothman, J. M., & Wasserman, M. D. (2008). Bigger groups have fewer parasites and similar cortisol levels: a multi-group analysis in red colobus monkeys. American Journal of Primatology, 70, 1–9.CrossRefGoogle Scholar
  54. Sousa, M. B. C., & Ziegler, T. E. (1998). Diurnal variation on the excretion patterns of fecal steroids in common marmoset (Callithrix jacchus) females. American Journal of Primatology, 46, 105–117.PubMedCrossRefGoogle Scholar
  55. Trexler, J. C., & Travis, J. (1993). Nontraditional regression analyses. Ecology, 74, 1629–1637.CrossRefGoogle Scholar
  56. Wallis, J., & Lee, D. R. (1999). Primate conservation: the prevention of disease transmission. International Journal of Primatology, 20, 803–826.CrossRefGoogle Scholar
  57. Wenz, A., Heyman, E. W., Petney, T. N., & Taraschewski, H. F. (2010). The influence of human settlements on the parasite community in two species of Peruvian tamarin. Parasitology, 137, 675–684.PubMedCrossRefGoogle Scholar
  58. Weyher, A. H. (2009). Crop raiding: The influence of behavioral and nutritional changes on primate-parasite relationships. In M. A. Huffman & C. A. Chapman (Eds.), Primate parasite ecology: The dynamics and study of host-parasite relationships (pp. 403–422). Cambridge, UK: Cambridge University Press.Google Scholar
  59. Wolfe, N. D., Escalante, A. A., Karesh, W. B., Kilbourn, A., Spielman, A., & Lal, A. A. (1998). Wild primate populations in emerging infectious disease research: the missing link? Emerging Infectious Diseases, 4, 149–158.PubMedCrossRefGoogle Scholar
  60. Ziegler, T. E., Scheffler, G., & Snowdon, C. T. (1995). The relationship of cortisol levels to social environment and reproductive functioning in female cotton-top tamarins, Saguinus oedipus. Hormones and Behavior, 29, 407–424.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of AnthropologyMcGill UniversityMontrealCanada
  2. 2.Department of Anthropology and McGill School of EnvironmentMcGill UniversityMontrealCanada
  3. 3.Wildlife Conservation SocietyBronxUSA

Personalised recommendations