International Journal of Primatology

, Volume 32, Issue 1, pp 118–133 | Cite as

Bioenergetic Constraints on Primate Abundance

  • David A. Raichlen
  • Adam D. Gordon
  • Wes Sechrest


Explaining variation in primate population densities is central to understanding primate ecology, evolution, and conservation. Yet no researchers to date have successfully explained variation in primate population density across dietary class and phylogeny. Most previous work has focused on measures of food availability, as access to food energy likely constrains the number of individuals supported in a given area. However, energy output may provide a measure of energy constraints on population density that does not require detailed data on food availability for a given taxon. Across mammals, many studies have shown that population densities generally scale with body mass−0.75. Because individual energy expenditures scale with body mass0.75, population energy use (the product of population density and individual energy use) does not change with body mass, which suggests the existence of energy constraints on population density across body sizes, i.e., taxa are limited to a given amount of energy use, constraining larger taxa to lower densities. We examined population energy use and individual energy expenditure in primates and tested this energy equivalence across body mass. We also used a residual analysis to remove the effects of body mass on primate population densities and energy expenditures using basal metabolic rates (BMR; kcal/d) as a proxy for total daily energy expenditure. After taking into account phylogeny, population energy use did not significantly correlate with body mass. Larger primates, which use more energy per day, live at lower population densities than smaller primates. In addition, we found a significant negative correlation between residuals of BMR from body mass and residuals of population density from body mass after taking phylogeny into account. Thus, energy costs constrain population density across a diverse sample of primates at a given body mass, and primate species that have relatively low BMRs exist at relatively high densities. A better understanding of the determinants of primate energy costs across geography and phylogeny will ultimately help us explain and predict primate population densities.


Allometric scaling Basal metabolic rate Energetics Energy equivalence rule Population density Resting metabolic rate 



We thank Adam Foster, Paul Garber, and 3 anonymous reviewers for helpful discussions and comments on this manuscript. Comments and suggestions from Joanna Setchell and 2 anonymous reviewers greatly improved the manuscript. W. Sechrest thanks the University of Virginia for research support.


  1. Allen, A. P., Brown, J. H., & Gillooly, J. F. (2002). Blobal biodiversity, biochemical kinetics, and the energetic equivalence rule. Science, 297, 1545–1548.PubMedCrossRefGoogle Scholar
  2. Armstrong, E. (1985). Relative brain size in monkeys and prosimians. American Journal of Physical Anthropology, 66, 263–273.PubMedCrossRefGoogle Scholar
  3. Blackburn, T. M., & Gaston, K. J. (1999). The relationship between animal abundance and body size: a review of the mechanisms. Advances in Ecological Research, 28, 181–210.CrossRefGoogle Scholar
  4. Blackburn, T. M., Lawton, J. H., & Pimm, S. L. (1993). Nonmetabolic explanations for the relationship between body size and animal abundance. Journal of Animal Ecology, 62, 694–702.CrossRefGoogle Scholar
  5. Blomberg, S. T., Garland, T. J., & Ives, A. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717–745.PubMedGoogle Scholar
  6. Bromham, L., Rambaut, A., & Harvey, P. H. (1996). Determinants of rate variation in mammalian DNA sequence evolution. Journal of Molecular Evolution, 43, 610–621.PubMedCrossRefGoogle Scholar
  7. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.CrossRefGoogle Scholar
  8. Bruhn, J. M. (1934). The respiratory metabolism of infrahuman primates. American Journal of Physiology, 110, 477–484.Google Scholar
  9. Butynski, T. M. (1990). Comparative ecology of blue monkeys (Cercopithecus mitis) in high-density and low-density subpopulations. Ecological Monographs, 60, 1–26.CrossRefGoogle Scholar
  10. Byrne, R. W., Whiten, A., Henzi, S. P., & McCulloch, F. M. (1993). Nutritional constraints on mountain baboons (Papio ursinus): implications for baboon socioecology. Behavioral Ecology and Sociobiology, 33, 233–246.CrossRefGoogle Scholar
  11. Capellini, I., Venditti, C., & Barton, R. A. (in press). Phylogeny and the scaling of metabolic rates in mammals. Ecology Google Scholar
  12. Careau, V., Morand-Ferron, J., & Thomas, D. (2007). Basal metabolic rate of canidae from hot deserts to cold arctic climates. Journal of Mammalogy, 88, 394–400.CrossRefGoogle Scholar
  13. Chapman, C. A., & Chapman, L. J. (1999). Implications of small scale variation in ecological conditions for the diet and density of red colobus monkeys. Primates, 40, 215–232.CrossRefGoogle Scholar
  14. Chapman, C. A., Chapman, L. J., Bjorndal, K. A., & Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. International Journal of Primatology, 23, 283–310.CrossRefGoogle Scholar
  15. Chapman, C. C., Naughten-Treves, L., Lawes, M., & McDowel, L. (2004). Predicting folivorous primate abundance: validation of a nutritional model. American Journal of Primatology, 62, 55–69.PubMedCrossRefGoogle Scholar
  16. Cohen, J. E., Jonsson, T., & Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the USA, 100, 1781–1786.PubMedCrossRefGoogle Scholar
  17. Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699–700.CrossRefGoogle Scholar
  18. Damuth, J. (1987). Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biological Journal of the Linnaean Society of London, 31, 193–246.CrossRefGoogle Scholar
  19. Daniels, H. L. (1984). Oxygen consumption in Lemur fulvus: deviation from the ideal model. Journal of Mammalogy, 65, 584–592.CrossRefGoogle Scholar
  20. Davies, A. G. (1994). Colobine populations. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: their ecology, behaviour and evolution (pp. 285–310). Cambridge: Cambridge University Press.Google Scholar
  21. Dittus, W. J. P. (1979). The evolution of behaviors regulating density and age-specific sex ratios in a primate population. Behaviour, 69, 265–302.CrossRefGoogle Scholar
  22. Drack, S., Ortmann, S., Buhrmann, N., Schmid, J., Warren, R. D., Heldmaier, G., et al. (1999). Field metabolic rate and the cost of ranging of the Red-tailed Sportive Lemur. In B. Rakotosamimanana, H. Rasaminanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 83–91). New York: Plenum.Google Scholar
  23. Dunbar, R. I. M. (1992). A model of the gelada socioecological system. Primates, 33, 69–83.CrossRefGoogle Scholar
  24. Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and population density. Nature, 395, 163–165.CrossRefGoogle Scholar
  25. Enquist, B. J., & Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.PubMedCrossRefGoogle Scholar
  26. Fa, J. E., & Purvis, A. (1997). Diet and population density in afrotropical forest mammals: a comparison with neotropical species. The Journal of Animal Ecology, 66, 98–112.CrossRefGoogle Scholar
  27. Fabre, P. H., Rodriguesa, A., & Douzerya, E. J. P. (2009). Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular phylogenetics and evolution, 53, 808–825.PubMedCrossRefGoogle Scholar
  28. Felsenstein, J. (1985). Phylogenis and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  29. Fimbel, C. (1994). Ecological correlates of species success in modified habitats may be disturbance-specific and site-specific: the primates of Tiwai island. Conservation Biology, 8, 106–113.CrossRefGoogle Scholar
  30. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist, 160, 712–726.PubMedCrossRefGoogle Scholar
  31. Ganzhorn, J. U. (2002). Distribution of a folivorous lemur in relation to seasonally varying food resources: integrating quantitative aspects of food characteristics. Oecologia, 131, 427–435.CrossRefGoogle Scholar
  32. Garland, T., Jr., & Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–364.CrossRefGoogle Scholar
  33. Garland, T., Jr., Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogentically independent contrasts. Systematic Biology, 41, 18–32.Google Scholar
  34. Gaulin, S. J. C. (1979). A Jarman/Bell model of primate-feeding niches. Human Ecology, 7, 1–20.CrossRefGoogle Scholar
  35. Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886–889.PubMedCrossRefGoogle Scholar
  36. Glazier, D. S. (2005). Beyond the ‘3/4 power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews, 80, 611–662.PubMedCrossRefGoogle Scholar
  37. Godfrey, L., Samonds, K., Jungers, W., Sutherland, M., & Irwin, M. (2004). Ontogenetic correlates of diet in Malagasy lemurs. American Journal of Physical Anthropology, 123, 250–276.PubMedCrossRefGoogle Scholar
  38. Gordon, A. D. (2006). Scaling of size and dimorphism in primates II: macroevolution. International Journal of Primatology, 27, 63–105.CrossRefGoogle Scholar
  39. Greenwood, J. J. D., Gregory, R. D., Harris, S., Morris, P. A., & Yalden, D. W. (1996). Relations between abundance, body size and species number in British birds and mammals. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 351, 265–278.CrossRefGoogle Scholar
  40. Griffiths, D. (1992). Size, abundance, and energy use in communities. Journal of Animal Ecology, 61, 307–315.CrossRefGoogle Scholar
  41. Gupta, A. K., & Chivers, D. J. (1999). Biomass and use of resources in south and south-east Asian primate communities. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 38–54). Cambridge: Cambridge University Press.Google Scholar
  42. Hanya, G., Yoshihiro, S., Zamma, K., Matsubara, H., Ohtake, M., Kubo, R., et al. (2004). Environmental determinants of the altitudinal variations in relative group densities of Japanese macaques on Yakushima. Ecological Research, 19, 485–493.CrossRefGoogle Scholar
  43. Harcourt, A. H. (2000). Latitude and latitudinal extent: a global analysis of the Rapoport effect in a tropical mammalian taxon: primates. Journal of Biogeography, 27, 1169–1182.CrossRefGoogle Scholar
  44. Hildwein, G. (1972). Métabolisme énergetique de quelques mammaifères et oiseaux de la forêt équatoriale. II. Résultats experimentaux et discussion. Archives des Sciences Physiologiques (Paris), 26, 387–400.Google Scholar
  45. Hildwein, G., & Goffart, M. (1975). Standard metabolism and thermoregulation in a prosimian, Perodicticus potto. Comparative Biochemistry and Physiology Part A, 50A, 201–213.Google Scholar
  46. Isaac, N. J. B., & Carbone, C. (in press). Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters doi: 10.1111/j.1461–0248.2010.01461.x
  47. Isaac, N. J. B., Jones, K. E., Gittleman, J. L., & Purvis, A. (2005). Correlates of species richness in mammals: body size, life history, and ecology. American Naturalist, 165, 600–607.PubMedCrossRefGoogle Scholar
  48. Isler, K., & van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology Letters, 2, 557–560.PubMedCrossRefGoogle Scholar
  49. Janson, C. H. (1984). Female choice and mating system of the brown capuchin monkey Cebus apella (Primates: Cebidae). Zeitschrift für Tierpsychologie, 65, 177–200.Google Scholar
  50. Janson, C. H., & Chapman, C. A. (1999). Resources and primate community structure. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 237–267). Cambridge: Cambridge University Press.Google Scholar
  51. Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J. O., Orme, C. D. L., et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648.CrossRefGoogle Scholar
  52. Knox, C. M., & Wright, P. G. (1989). Thermoregulation and energy metabolism in the lesser bushbaby, Galago senegalensis moholi. South African Journal of Zoology, 24, 89–94.Google Scholar
  53. Konarzewski, M., & Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution, 49, 1239–1248.CrossRefGoogle Scholar
  54. Kurland, J. A., & Pearson, J. D. (1986). Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. American Journal of Physical Anthropology, 71, 445–457.PubMedCrossRefGoogle Scholar
  55. Lee, P. C., & Hauser, M. D. (1998). Long-term consequences of changes in territory quality on feeding and reproductive strategies of vervet monkeys. Journal of Animal Ecology, 67, 347–358.CrossRefGoogle Scholar
  56. Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–281.PubMedCrossRefGoogle Scholar
  57. Leonard, W. R., Galloway, V. A., & Ivakine, E. (1997). Underestimation of daily energy expenditure with the factorial methods: implications for anthropological research. American Journal of Physical Anthropology, 103, 443–454.PubMedCrossRefGoogle Scholar
  58. Leonard, W. R., Sorenson, M. V., Galloway, V. A., Spencer, G. J., Mosher, M. J., Osipova, L., et al. (2002). Climatic influences on basal metabolic rates among circumpolar populations. American Journal of Human Biology, 14, 609–620.PubMedCrossRefGoogle Scholar
  59. Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. American Naturalist, 156, 201–219.PubMedCrossRefGoogle Scholar
  60. Lovegrove, B. G. (2003). The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology [B], 173, 87–112.Google Scholar
  61. Marquet, P. A., Navarrete, S. A., & Castilla, J. C. (1990). Scaling population density to body mass in rocky intertigal communities. Science, 250, 1125–1127.PubMedCrossRefGoogle Scholar
  62. Marquet, P. A., Navarrete, S. A., & Castilla, J. C. (1995). Population density, and the energetic equivalence rule. Journal of Animal Ecology, 64, 325–332.CrossRefGoogle Scholar
  63. Marshall, A. J., & Leighton, M. (2006). How does food availability limit the population density of white-bearded gibbons. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates: Physical and behavioral aspects (pp. 311–333). Cambridge: Cambridge University Press.Google Scholar
  64. McNab, B. K. (1978). Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on an ubiquitous food supply. In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 153–162). Washington, DC: Smithsonian Institution Press.Google Scholar
  65. McNab, B. K. (2000). The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Canadian Journal of Zoology, 78, 2227–2239.CrossRefGoogle Scholar
  66. McNab, B. K. (2002). The physiological ecology of vertebrates: A view from energetics. Ithaca: Cornell University Press.Google Scholar
  67. McNab, B. K. (2007). The evolution of energetics in birds and mammals. University of California Publications in Zoology, 137, 67–110.Google Scholar
  68. McNab, B. K., & Morrison, P. (1963). Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecological Monographs, 33, 63–82.CrossRefGoogle Scholar
  69. Mendes Pontes, A. R. (1999). Environmental determinants of primate abundance in Maraca Island, Romaima, Brazilian Amazonia. Journal of Zoology, 247, 189–199.Google Scholar
  70. Milton, K. (1982). Dietary quality and populations regulation in a howler monkey population. In E. G. Leigh, A. S. Rand, & D. M. Windsor (Eds.), The ecology of a tropical forest: Seasonal rhythms and long-term changes (pp. 273–290). Washington, DC: Smithsonian Institution Press.Google Scholar
  71. Milton, K., & May, M. L. (1976). Body weight, diet and home range area in primates. Nature, 259, 459–462.PubMedCrossRefGoogle Scholar
  72. Milton, K., Casey, T. M., & Casey, K. K. (1979). The basal metabolism of mantled howler monkeys (Alouatta palliata). Journal of Mammalogy, 60, 373–376.CrossRefGoogle Scholar
  73. Mitani, M. (1989). Cercocebus torquatus: adaptive feeding and ranging behaviors related to seasonal fluctuations of food resources in the tropical rain forest of south-western Cameroon. Primates, 30, 307–323.CrossRefGoogle Scholar
  74. Muchlinski, M. N. (2010). Ecological correlates of infraorbital foramen area in primates. American Journal of Physical Anthropology, 141, 131–141.PubMedGoogle Scholar
  75. Mueller, P., & Diamond, J. (2001). Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Sciences of the USA, 98, 12550–12554.PubMedCrossRefGoogle Scholar
  76. Muller, E. F. (1979). Energy metabolism, thermoregulation and water budget in the slow loris (Nycticebus coucang, Boddaert 1785). Comparative Biochemistry and Physiology Part A, 64, 109–119.Google Scholar
  77. Muller, E. F., & Jaksche, H. (1980). Thermoregulation, oxygen consumption, heart rate and evaporative water loss in the thick-tailed bushbaby (Galago crassicaudatus Geoffroy, 1812). Zeitschrift für Saügertierkunde, 45, 269–278.Google Scholar
  78. Muller, E. F., Kamau, J. M. Z., & Maloiy, G. M. O. (1983). A comparative study of basal metabolism and thermoregulation in a folivorous (Colobus guereza) and an omnivorous (Cercopithecus mitis) primate species. Comparative Biochemistry and Physiology Part A, 74, 319–322.Google Scholar
  79. Nagy, K. A., & Milton, K. (1979). Energy metabolism and food consumption by wild howler monkeys (Alouatta palliata). Ecology, 60, 475–480.CrossRefGoogle Scholar
  80. Nee, S., Read, A. F., Greenwood, J. J. D., & Harvey, P. H. (1991). The relationship between abundance and body size in British birds. Nature, 351, 312–313.CrossRefGoogle Scholar
  81. Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilba, G. L., et al. (1990). Determinants of variation in tropical forest primate biomass: new evidence from West Africa. Ecology, 71, 328–343.CrossRefGoogle Scholar
  82. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.PubMedCrossRefGoogle Scholar
  83. Peres, C. A. (1997). Effects of habitat quality and hunting pressure on arboreal folivore density in Neotropical forests: a case study of howler monkeys (Alouatta spp.). Folia Primatologica, 68, 199–222.CrossRefGoogle Scholar
  84. Plumptre, A. J., & Reynolds, V. (1994). The effect of selective logging on the primate populations in the Budongo Forest Reserve, Uganda. Journal of Applied Ecology, 31, 631–641.CrossRefGoogle Scholar
  85. Proppe, D. W., & Gale, C. C. (1970). Endocrine thermoregulatory responses to local hypothalamic warming in unanesthetized baboons. American Journal of Physiology, 219, 202–207.PubMedGoogle Scholar
  86. Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society of London, Series B: Biological Sciences, 267, 1947–1952.CrossRefGoogle Scholar
  87. R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 3–900051–07–0,
  88. Raichlen, D. A., Gordon, A. D., Muchlinski, M. N., & Snodgrass, J. J. (2010). Causes and significance of variation in mammalian basal metabolism. Journal of Comparative Physiology [B], 180, 301–311.Google Scholar
  89. Ricklefs, R. E., Konarzewski, M., & Daan, S. (1996). The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. American Naturalist, 147, 1047–1071.CrossRefGoogle Scholar
  90. Rode, K. D., Chapman, C. A., McDowell, L. R., & Stickler, C. (2006). Nutritional correlates of population density across habitats and logging intensities in redtail monkeys (Cercopithecus ascanius). Biotropica, 38, 625–634.CrossRefGoogle Scholar
  91. Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution, 55, 2143–2160.PubMedGoogle Scholar
  92. Russo, S. E., Robinson, S. K., & Terbogh, J. (2003). Size-abundance relationships in an Amazonian bird community: implications for the energy equivalence rule. American Naturalist, 161, 267–283.PubMedCrossRefGoogle Scholar
  93. Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., et al. (2004). The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257–282.CrossRefGoogle Scholar
  94. Schmid, J., & Speakman, J. R. (2000). Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. Journal of Comparative Physiology [B], 170, 633–641.Google Scholar
  95. Schmidt-Nielsen, K. (1997). Animal physiology (5th ed.). Cambridge: Cambridge University Press.Google Scholar
  96. Scholander, P. F., Hock, R., Walters, V., & Irving, L. (1950). Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biological Bulletin, 99, 259–271.PubMedCrossRefGoogle Scholar
  97. Sieg, A. E., O’Connor, M. P., McNair, J. N., Grant, B. W., Agosta, S. J., & Dunham, A. E. (2009). Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? American Naturalist, 174, 720–733.PubMedCrossRefGoogle Scholar
  98. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.PubMedCrossRefGoogle Scholar
  99. Snodgrass, J. J., Leonard, W. R., Tarskaia, L. A., Alekseev, V. P., & Krivoshapkin, V. G. (2005). Basal metabolic rate in the Yakut (Sakha) of Siberia. American Journal of Human Biology, 17, 155–172.PubMedCrossRefGoogle Scholar
  100. Snodgrass, J. J., Leonard, W. R., & Robertson, M. L. (2007). Primate bioenergetics: An evolutionary perspective. In M. J. Ra vosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 703–737). New York: Springer.CrossRefGoogle Scholar
  101. Struhsaker, T. T. (1973). A recensus of vervet monkeys in the Masai-Amboseli Game Reserve, Kenya. Ecology, 54, 930–932.CrossRefGoogle Scholar
  102. Swanson, D. L., & Liknes, E. T. (2006). A comparative analysis of thermogenic capacity and cold tolerance in small birds. Journal of Experimental Biology, 209, 466–474.PubMedCrossRefGoogle Scholar
  103. Terborgh, J. W., & van Schaik, C. P. (1987). Convergence vs. nonconvergence in primate communities. In J. H. R. Gee & P. S. Giller (Eds.), Organization of communities, past and present (pp. 205–226). Oxford: Blackwell Scientific.Google Scholar
  104. Wang, Z., O’Connor, T. P., Heshka, S., & Heymsfield, S. B. (2001). The reconstruction of Kleiber’s law at the organ-tissue level. Journal of Nutrition, 131, 2967–2970.PubMedGoogle Scholar
  105. Waterman, P. G., Ross, J. A. M., Bennet, E. L., & Davies, A. G. (1988). A comparison of the floristics and leaf chemistry of the tree flora in two laysian rain forest and the influence of leaf chemistry on populations of colobine monkeys in the Old World. Biological Journal of the Linnaean Society of London, 34, 1–32.CrossRefGoogle Scholar
  106. West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.PubMedCrossRefGoogle Scholar
  107. White, C. R., & Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass2/3. Proceedings of the National Academy of Sciences of the USA, 100, 4046–4049.PubMedCrossRefGoogle Scholar
  108. White, C. R., & Seymour, R. S. (2004). Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables. Physiological and Biochemical Zoology, 77, 929–941.PubMedCrossRefGoogle Scholar
  109. White, C. R., Ernest, S. K. M., Kerkhoff, A. J., & Enquist, B. J. (2007a). Relationships between body size and abundance in ecology. TREE, 22, 323–330.Google Scholar
  110. White, C. R., Cassey, P., & Blackburn, T. M. (2007b). Allometric exponents do not support a universal metabolic allometry. Ecology, 88, 315–323.CrossRefGoogle Scholar
  111. White, C. R., Blackburn, T. M., & Seymour, R. S. (2009). Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution, 63, 2658–2667.PubMedCrossRefGoogle Scholar
  112. Whiten, A., Byrne, R. W., & Henzi, S. P. (1987). The behavioral ecology of mountain baboons. International Journal of Primatology, 8, 367–388.CrossRefGoogle Scholar
  113. Yoshihiro, S., Ohtake, M., Matsubara, H., Zamma, K., Han’ya, G., Tanimura, Y., et al. (1999). Vertical distribution of wild Yakushima macaques (Macaca fuscata yakui) in the western area of Yakushima Island, Japan: preliminary report. Primates, 40, 409–415.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David A. Raichlen
    • 1
  • Adam D. Gordon
    • 2
  • Wes Sechrest
    • 3
  1. 1.Department of AnthropologyUniversity of ArizonaTucsonUSA
  2. 2.Department of AnthropologyUniversity at Albany—SUNYAlbanyUSA
  3. 3.Global Wildlife ConservationSan FranciscoUSA

Personalised recommendations