Advertisement

International Journal of Primatology

, Volume 29, Issue 6, pp 1535–1547 | Cite as

Food Preferences and Nutrient Composition in Captive White-handed Gibbons, Hylobates lar

  • Ronald Jildmalm
  • Mats Amundin
  • Matthias Laska
Article

Abstract

We aimed to assess spontaneous food preferences in captive white-handed gibbons and to analyze whether they correlate with nutrient composition. Via a 2-alternative choice test, we repeatedly presented 3 male Hylobates lar with all possible binary combinations of 10 types of food that are part of their diet in captivity and found the following rank order of preference: grape > banana = fig > apple > pear > honeydew melon > carrot > tomato > cucumber > avocado. Correlational analyses revealed a highly significant positive correlation between the food preference ranking and the total carbohydrate, fructose, and glucose contents of the foods (p < 0.01, respectively). With the exception of the trace mineral selenium (p < 0.05), there was no other significant correlation with any other macro- or micronutrient. In addition, the food preferences were stable across the day because rankings obtained from tests performed at 0900, 1200, and 1500 h, respectively, did not differ significantly (p > 0.05). Our results suggest that captive white-handed gibbons are not opportunistic, but selective feeders with regard to maximizing net gain of energy because only the content of carbohydrates, but not the contents of total energy, proteins, or lipids significantly correlate with the displayed food preferences. Further, the results suggest that captive Hylobates lar, in contrast to their free-ranging conspecifics, do not display marked changes in their food selection across the day.

Keywords

food preferences frugivory Hylobates lar nutrient composition white-handed gibbons 

References

  1. Banjo, A. D., Lawal, O. A., & Songonuga, E. A. (2006). The nutritional value of fourteen species of edible insects in southwestern Nigeria. African Journal of Biotechnology, 5, 298–301.Google Scholar
  2. Bartlett, T. Q. (2007). The hylobatidae: Small apes of Asia. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 274–289). New York: Oxford University Press.Google Scholar
  3. Barton, R. A., & Whiten, A. (1994). Reducing complex diets to simple rules: food selection by olive baboons. Behavioral Ecology and Sociobiology, 35, 283–293. doi: 10.1007/BF00170709.CrossRefGoogle Scholar
  4. Bollard, E. G. (1970). The physiology and nutrition of developing fruits. In A. C. Hulme (Ed.), The biochemistry of fruits and their products, Vol. 1 (pp. 387–425). London: Academic Press, London.Google Scholar
  5. Breslin, P. A. S., Beauchamp, G. K., & Pugh, E. N. (1996). Monogeusia for fructose, glucose, sucrose and maltose. Perception & Psychophysics, 58, 327–341.Google Scholar
  6. Breslin, P. A. S., Kemp, S., & Beauchamp, G. K. (1994). Single sweetness signal. Nature, 369, 447–448. doi: 10.1038/369447a0.PubMedCrossRefGoogle Scholar
  7. Carpenter, C. R. (1940). A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar). In R. M. Dorcus (Ed.), Comparative psychology monographs (pp. 84–206). Baltimore: The Johns Hopkins Press.Google Scholar
  8. Chivers, D. J. (1984). Feeding and ranging in gibbons: A summary. In H. Preuschoft, D. J. Chivers, W. Y. Brockelman, & N. Creel (Eds.), The lesser apes: Evolutionary and behavioural biology (pp. 267–281). Edinburgh: Edinburgh University Press.Google Scholar
  9. Conklin-Brittain, M. L., Wrangham, R., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance: II. Macronutrients. International Journal of Primatology, 19, 971–998. doi: 10.1023/A:1020370119096.CrossRefGoogle Scholar
  10. Food Standards Agency (2002). McCance and Widdowson’s The Composition of Foods (6th ed.). Cambridge: Royal Society of Chemistry.Google Scholar
  11. Fragaszy, D., Visalberghi, E., & Galloway, A. (1997). Infant tufted capuchin monkeys’ behaviour with novel foods: opportunism, not selectivity. Animal Behaviour, 53, 1337–1343. doi: 10.1006/anbe.1996.0368.PubMedCrossRefGoogle Scholar
  12. Freeland, W. J., & Janzen, D. H. (1974). Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist, 108, 269–289. doi: 10.1086/282907.CrossRefGoogle Scholar
  13. Glander, K. E. (1982). The impact of plant secondary compounds on primate feeding behavior. Yearbook of Physical Anthropology, 25, 1–18. doi: 10.1002/ajpa.1330250503.CrossRefGoogle Scholar
  14. Harding, R. S. O. (1981). An order of omnivores: non-human primates in the wild. In R. S. O. Harding, & G. Teleki (Eds.), Omnivorous primates. Gathering and hunting in human evolution (pp. 191–214). New York: Columbia University Press.Google Scholar
  15. Hughes, R. N. (1993). Diet selection. An inter-disciplinary approach to foraging behaviour. London: Blackwell.Google Scholar
  16. Jolly, A. (1985). Food and feeding. In A. Jolly (Ed.), The evolution of primate behavior (pp. 45–71, 2nd ed.). New York: Macmillan.Google Scholar
  17. Laska, M. (1997). Taste preferences for five food-associated sugars in the squirrel monkey (Saimiri sciureus). Journal of Chemical Ecology, 23, 659–671. doi: 10.1023/B:JOEC.0000006402.93081.4e.CrossRefGoogle Scholar
  18. Laska, M. (2001). A comparison of food preferences and nutrient composition in captive squirrel monkeys, Saimiri sciureus, and pigtail macaques, Macaca nemestrina. Physiology & Behavior, 73, 111–120. doi: 10.1016/S0031-9384(01)00439-5.CrossRefGoogle Scholar
  19. Laska, M., Hermandez Salazar, L. T., & Rodriguez Luna, E. (2000). Food preferences and nutrient composition in captive spider monkeys, Ateles geoffroyi. International Journal of Primatology, 21, 671–683. doi: 10.1023/A:1005517421510.CrossRefGoogle Scholar
  20. Laska, M., Luna Baltazar, J. M., & Rodriguez Luna, E. (2003). Food preferences and nutrient composition in captive pacas, Agouti paca (Rodentia, Dasyproctidae). Mammalian Biology, 68, 31–41. doi: 10.1078/1616-5047-00059.CrossRefGoogle Scholar
  21. Leighton, M. (1993). Modeling dietary selectivity by bornean orangutans: evidence for integration of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–311. doi: 10.1007/BF02192635.CrossRefGoogle Scholar
  22. Mackinnon, J. R., & Mackinnon, K. S. (1980). Niche differentiation in a primate community. In D. J. Chivers (Ed.), Malayan forest primates (pp. 167–190). New York: Plenum Press.Google Scholar
  23. Menzel, E. W., & Draper, W. A. (1965). Primate selection of food by size: visible versus invisible rewards. Journal of Comparative and Physiological Psychology, 59, 231–239. doi: 10.1037/h0021833.PubMedCrossRefGoogle Scholar
  24. Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19, 513–548. doi: 10.1023/A:1020364523213.CrossRefGoogle Scholar
  25. Oftedal, O. T. (1991). The nutritional consequences of foraging in primates: the relationship of nutrient intakes to nutrient requirements. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 334, 161–170. doi: 10.1098/rstb.1991.0105.PubMedCrossRefGoogle Scholar
  26. Palombit, R. A. (1997). Inter- and intraspecific variation in the diets of sympatric siamang (Hylobates syndactylus) and lar gibbons (Hylobates lar). Folia Primatologica, 68, 321–337. doi: 10.1159/000157260.CrossRefGoogle Scholar
  27. Payne, J. B. (1980). Competitors. In D. J. Chivers (Ed.), Malayan forest primates (pp. 261–277). New York: Plenum Press.Google Scholar
  28. Raemaekers, J. (1978). Changes through the day in the food choice of wild gibbons. Folia Primatologica, 30, 194–205. doi: 10.1159/000155863.CrossRefGoogle Scholar
  29. Ramos-Elorduy, J., Moreno, J. M. P., Prado, E. E., Perez, M. A., Otero, J. L., & de Guevara, O. L. (1997). Nutritional value of edible insects from the state of Oaxaca, Mexico. Journal of Food Composition and Analysis, 10, 142–157. doi: 10.1006/jfca.1997.0530.CrossRefGoogle Scholar
  30. Redford, K. H., Bouchardet Da Fonseca, G. A., & Lacher, T. E. (1984). The relationship between frugivory and insectivory in primates. Primates, 25, 433–440. doi: 10.1007/BF02381666.CrossRefGoogle Scholar
  31. Remis, M. J. (2002). Food preferences among captive Western gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 231–249. doi: 10.1023/A:1013837426426.CrossRefGoogle Scholar
  32. Richard, A. F. (1985). Primate diets: patterns and principles. In A. F. Richard (Ed.), Primates in nature (pp. 163–205). New York: W. H. Freeman.Google Scholar
  33. Simmen, B., & Sabatier, D. (1996). Diets of some French Guianan primates: food composition and food choices. International Journal of Primatology, 17, 661–693. doi: 10.1007/BF02735260.CrossRefGoogle Scholar
  34. Simmen, B., Hladik, A., Ramasiarisoa, P. L., Iaconelli, S., & Hladik, C. M. (1999). Taste discrimination in lemurs and other primates, and the relationships to distribution of the plant allelochemicals in different habitats of Madagascar. In H. Rakotosamimanana (Ed.), New directions in Lemur Studies (pp. 201–219). New York: Kluwer.Google Scholar
  35. Souci, S. W., Fachmann, W., & Kraut, H. (1989). Food composition and nutrition tables. Stuttgart: Wissenschaftliche Verlagsgesellschaft.Google Scholar
  36. Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton: Princeton University Press.Google Scholar
  37. Stevenson, P. R. (2003). Fruit choice by woolly monkeys in Tinigua National Park, Colombia. International Journal of Primatology, 25, 367–381. doi: 10.1023/B:IJOP.0000019157.35464.a0.CrossRefGoogle Scholar
  38. Thorington, R. W. (1970). Feeding behavior of nunhuman primates in the wild. In R. S. Harris (Ed.), Feeding and nutrition of nonhuman primates (pp. 15–27). New York: Academic Press.Google Scholar
  39. Ungar, P. S. (1995). Fruit preferences of four sympatric primate species at Ketambe, Northern Sumatra, Indonesia. International Journal of Primatology, 16, 221–245. doi: 10.1007/BF02735479.CrossRefGoogle Scholar
  40. Ungar, P. S. (1996). Relationship of incisor size to diet and anterior tooth use in sympatric Sumatran anthropoids. American Journal of Primatology, 38, 145–156. doi: 10.1002/(SICI)1098-2345(1996)38:2<145::AID-AJP3>3.0.CO;2-Z.CrossRefGoogle Scholar
  41. Visalberghi, E., Valente, M., & Fragaszy, D. (1998). Social context and consumption of unfamiliar foods by capuchin monkeys (Cebus apella) over repeated encounters. American Journal of Primatology, 45, 367–380. doi: 10.1002/(SICI)1098-2345(1998)45:4<367::AID-AJP4>3.0.CO;2-U.PubMedCrossRefGoogle Scholar
  42. Visalberghi, E., Sabbatini, G., Stammati, M., & Addessi, E. (2003). Preferences towards novel foods in Cebus apella: the role of nutrients and social influences. Physiology & Behavior, 80, 341–349. doi: 10.1016/j.physbeh.2003.08.004.CrossRefGoogle Scholar
  43. Waterman, P. G. (1984). Food acquisition and processing as a function of plant leaf chemistry. In D. J. Chivers, B. A. Wood, & A. Bilsborough (Eds.), Food acquisition and processing in primates (pp. 177–211). New York: Plenum Press.Google Scholar
  44. Whitten, A. J. (1982). Diet and feeding behaviour of kloss gibbons on Siberut Island, Indonesia. Folia Primatologica, 37, 177–208. doi: 10.1159/000156032.CrossRefGoogle Scholar
  45. Wrangham, R., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance: I. Antifeedants. International Journal of Primatology, 19, 949–970. doi: 10.1023/A:1020318102257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.IFM BiologyLinköping UniversityLinköpingSweden
  2. 2.Kolmårdens DjurparkKolmårdenSweden

Personalised recommendations