Advertisement

International Journal of Primatology

, Volume 29, Issue 3, pp 757–772 | Cite as

What Insights Can Baboon Feeding Ecology Provide for Early Hominin Niche Differentiation?

  • Daryl Codron
  • Julia A. Lee-Thorp
  • Matt Sponheimer
  • Darryl de Ruiter
  • Jacqui Codron
Article

Abstract

Several authors have proposed that papionin baboons provide appropriate analogs for early hominin niche differentiation. Savanna-dwelling baboons and australopiths both radiated around the same time after Neogene expansion of C4 grasslands, likely experiencing similar environmental changes and faced with solving similar ecological problems. We explore the insights baboons may provide into dietary ecology of savanna-occupying hominins. We compare dietary information from stable isotope data for feces, hair, and tooth dentine collagen of modern chacma baboons (Papio ursinus) with dietary data for Plio-Pleistocene papionins and hominins from South African savannas. Results confirm that, like the australopiths, baboons consume substantial amounts of C4 food sources. However, the magnitude of inter- and intraindividual variation in baboon diets across different seasons and habitats is less than that from specimens of Australopithecus africanus and Paranthropus robustus analyzed to date. Hominins also consumed greater amounts of C4 resources. Thus, though the data demonstrate that the radiation of both primate groups was closely linked with the spread of C4 grasslands, hominins were even more extreme ecological generalists than baboons were. The absence of a fixed-diet in papionins implies that it was unlikely that the more ecologically flexible hominins evolved specializations for any one food type, an interpretation consistent with recent carbon isotope, dental microwear, and ecomorphological studies. We propose that researchers place less emphasis on resolving the foods that were most important for hominin differentiation; instead, future research should focus on questions related to ecological generalism.

Keywords

baboon carbon isotopes diet early hominin Kruger National Park nitrogen isotopes Waterberg 

Notes

Acknowledgments

We thank James Brink, Lloyd Rossouw, Judith Sealy, and Becky Ackermann for helpful discussions; John Lanham and Ian Newton for assistance with stable isotope analysis; Erwin Leibnitz, Hanno Kilian, and Andre Burger for assistance at Welgevonden; Dieter Mandlmeier and Salthiel Kgomo at Zoetfontein; and Kruger Park Scientific Services. The work is based partly on natural history specimens of the Transvaal Museum (TM), Pretoria, used with permission, and we thank Francis Thackeray, Teresa Kearney, and Stephany Potze of the TM. The Palaeontological Scientific Trust (PAST), the National Research Foundation of South Africa, and the University of Cape Town provided funding for the research.

References

  1. Altman, S. A. (1998). Foraging for survival: Yearling baboons in Africa. Chicago: University of Chicago Press.Google Scholar
  2. Ambrose, S. H. (1991). Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science, 18, 293–317.CrossRefGoogle Scholar
  3. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. B. Lambert, & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (p. 1–37). Berlin: Springer-Verlag.Google Scholar
  4. Ayliffe, L. K., Cerling, T. E., Robinson, T., West, A. G., Sponheimer, M., Passey, B. H., et al. (2004). Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia, 139, 11–21.PubMedCrossRefGoogle Scholar
  5. Barton, R. A., Whiten, A., Byrne, R. W., & English, M. (1993). Chemical composition of baboon plant foods: Implications for the interpretation of intra- and interspecific differences in diet. Folia Primatologica, 61, 1–20.Google Scholar
  6. Byrne, R. W., Whiten, A., Henzi, S. P., & McCulloch, F. M. (1993). Nutritional constraints on mountain baboons (Papio ursinus): Implications for baboon socioecology. Behavioral Ecology and Sociobiology, 33, 233–246.CrossRefGoogle Scholar
  7. Cerling, T. E., & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120, 347–363.CrossRefGoogle Scholar
  8. Clutton-Brock, T. H., & Harvey, P. H. (1979). Comparison and adaptation. Proceedings of the Royal Society of London, 205B, 247–565.Google Scholar
  9. Codron, D., Codron, J., Sponheimer, M., Lee-Thorp, J. A., Robinson, T., Grant, C. C., et al. (2005b). Assessing diet in savanna herbivores using stable carbon isotope ratios of faeces. Koedoe, 48, 115–124.Google Scholar
  10. Codron, D., Lee-Thorp, J. A., Sponheimer, M., & Codron, J. (2007). Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle. South African Journal of Wildlife Research, 37, 117–125.Google Scholar
  11. Codron, D., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006). Inter- and intra-habitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N and %N. American Journal of Physical Anthropology, 129, 204–214.PubMedCrossRefGoogle Scholar
  12. Codron, D., Luyt, J., Lee-Thorp, J. A., Sponheimer, M., de Ruiter, D., et al. (2005a). Utilization of savanna-based resources by Plio-Pleistocene baboons. South African Journal of Science, 101, 245–248.Google Scholar
  13. Daegling, D. J., & Grine, F. E. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40, 559–572.CrossRefGoogle Scholar
  14. Delson, E. (1992). Evolution of old world monkeys. In J. S. Jones, R. D. Martin, D. Pilbeam, & S. Bunney (Eds.), Cambridge encyclopedia of human evolution (pp. 217–222). Cambridge, UK: Cambridge University Press.Google Scholar
  15. DeNiro, M. J. (1985). Postmortem preservation and alterations of in vitro bone collagen isotope ratios in relation to paleodietary reconstruction. Nature, 317, 806–809.CrossRefGoogle Scholar
  16. DeVore, I., & Hall, K. R. L. (1965). Baboon ecology. In I. DeVore (Ed.), Primate behavior: Field studies of monkeys and apes (pp. 20–52, 1st ed.). New York: Holt, Rinehart and Winston.Google Scholar
  17. Dunbar, R. I. M. (1976). Australopithecine diet based on a baboon analogy. Journal of Human Evolution, 5, 161–167.CrossRefGoogle Scholar
  18. Dunbar, R. I. M. (1983). Theropithecines and hominids: Contrasting solutions to the same ecological problem. Journal of Human Evolution, 12, 647–658.CrossRefGoogle Scholar
  19. Dunbar, R. I. M., & Dunbar, E. P. (1974). Ecological relations and niche separation between sympatric terrestrial primates in Ethiopia. Folia Primatologica, 21, 36–60.Google Scholar
  20. Elton, S. (2006). Forty years on and still going strong: The use of hominin-cercopithecid comparisons in palaeoanthropology. Journal of the Royal Anthropological Institute, 12, 19–38.CrossRefGoogle Scholar
  21. Jolly, C. J. (1970). The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man, 5, 1–26.Google Scholar
  22. Jolly, C. J. (2001). A proper study for mankind: Analogies from the papionin monkeys and their implications for human evolution. Yearbook of Physical Anthropology, 44, 177–204.CrossRefGoogle Scholar
  23. Keeley, J. E., & Rundel, P. W. (2003). Evolution of CAM and C4 carbon-concentrating mechanisms. International Journal of Plant Science, 164, S55–S77.CrossRefGoogle Scholar
  24. Laden, G., & Wrangham, R. (2005). The rise of the hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and australopiths origins. Journal of Human Evolution, 49, 482–498.PubMedCrossRefGoogle Scholar
  25. Lee-Thorp, J. A., Sealy, J. C., & van der Merwe, N. J. (1989b). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16, 585–599.CrossRefGoogle Scholar
  26. Lee-Thorp, J. A., Sponheimer, M., & van der Merwe, N. J. (2003). What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene? International Journal of Osteoarchaeology, 13, 104–113.CrossRefGoogle Scholar
  27. Lee-Thorp, J. A., & van der Merwe, N. J. (1987). Carbon isotope analysis of fossil bone apatite. South African Journal of Science, 83, 712–715.Google Scholar
  28. Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1989a). Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution, 18, 183–190.CrossRefGoogle Scholar
  29. Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27, 361–372.CrossRefGoogle Scholar
  30. Norton, G. W., Rhine, R. J., Wynn, G. W., & Wynn, R. D. (1987). Baboon diet: A five-year study of stability and variability in the plant feeding and habitat of the yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Folia Primatologica, 48, 78–120.CrossRefGoogle Scholar
  31. Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D., et al. (2005). Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science, 32, 1459–1470.CrossRefGoogle Scholar
  32. Peters, C. R., & O’Brien, E. M. (1981). The early hominid plant-food niche: Insights from an analysis of plant exploitation by Homo, Pan, and Papio in Eastern and Southern Africa. Current Anthropology, 22, 127–140.CrossRefGoogle Scholar
  33. Peters, C. R., & Vogel, J. C. (2005). Africa’s wild C4 plant foods and possible early hominid diets. Journal of Human Evolution, 48, 219–236.PubMedCrossRefGoogle Scholar
  34. Phillips, D. L., & Gregg, J. W. (2003). Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136, 261–269.PubMedCrossRefGoogle Scholar
  35. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.PubMedCrossRefGoogle Scholar
  36. Robbins, C. T., Felicetti, L. A., & Sponheimer, M. (2005). The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia, 144, 534–540.PubMedCrossRefGoogle Scholar
  37. Rodman, P. S. (1999). Whither primatology? The place of primates in contemporary anthropology. Annual Review of Anthropology, 28, 311–339.CrossRefGoogle Scholar
  38. Schaller, G. B., & Lowther, G. R. (1969). The relevance of social carnivore behavior to the study of early hominids. Southwest Journal of Anthropology, 25, 307–341.Google Scholar
  39. Schoeninger, M. J., Iwaniec, U. T., & Glander, K. E. (1997). Stable isotope ratios indicate diet and habitat use in New World monkeys. American Journal of Physical Anthropology, 103, 69–83.PubMedCrossRefGoogle Scholar
  40. Schoeninger, M. J., Moore, J., & Sept, J. M. (1999). Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology, 49, 297–314.PubMedCrossRefGoogle Scholar
  41. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., et al. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436, 693–695.PubMedCrossRefGoogle Scholar
  42. Sealy, J. C. (1997). Stable carbon and nitrogen isotope ratios and coastal diets in the Later Stone Age of South Africa: A comparison and critical analysis of two data sets. Ancient Biomolecules, 1, 131–147.Google Scholar
  43. Sealy, J. C., van der Merwe, N. J., Lee-Thorp, J. A., & Lanham, J. L. (1987). Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing. Geochimica Cosmochimica Acta, 51, 2707–2717.CrossRefGoogle Scholar
  44. Sponheimer, M., & Lee-Thorp, J. A. (1999). Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science, 283, 368–370.PubMedCrossRefGoogle Scholar
  45. Sponheimer, M., Lee-Thorp, J., de Ruiter, D., Codron, D., Codron, J., Baugh, A., et al. (2005). Hominins, sedges, and termites: New carbon isotope data from the Sterkfontein Valley and Kruger National Park. Journal of Human Evolution, 48, 301–312.PubMedCrossRefGoogle Scholar
  46. Sponheimer, M., Loudon, J. E., Codron, D., Howells, M. E., Pruetz, J. D., Codron, J., et al. (2006a). Do savanna chimpanzees consume C4 resources? Journal of Human Evolution, 51, 128–133.PubMedCrossRefGoogle Scholar
  47. Sponheimer, M., Passey, B. H., de Ruiter, D. J., Guatelli-Steinberg, D., Cerling, T. E., & Lee-Thorp, J. A. (2006b). Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science, 314, 980–982.PubMedCrossRefGoogle Scholar
  48. Sponheimer, M., Robinson, T., Ayliffe, L., Passey, B., Roeder, B., Shipley, L., et al. (2003b). An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Canadian Journal of Zoology, 81, 871–876.CrossRefGoogle Scholar
  49. Sponheimer, M., Robinson, T., Ayliffe, L., Roeder, B., Hammer, J., Passey, B., et al. (2003a). Nitrogen isotopes in mammalian herbivores: Hair δ15N values from a controlled-feeding study. International Journal of Osteoarchaeology, 13, 80–87.CrossRefGoogle Scholar
  50. Strum, S. C. (1975). Primate predation: Interim report on the development of a tradition in a troop of olive baboons. Science, 187, 755–757.PubMedCrossRefGoogle Scholar
  51. Sutoh, M., Koyama, T., & Yoneyama, T. (1987). Variations of natural 15N abundances in the tissues and digesta of domestic animals. Radioisotopes, 36, 74–77.PubMedGoogle Scholar
  52. Tainton, N. M. (1999). The ecology of the main grazing lands of South Africa: The Savanna biome. In N. M. Tainton (Ed.), Veld management in South Africa (pp. 23–53). Pietermaritzburg, South Africa: University of Natal Press.Google Scholar
  53. Thackeray, J. F., Henzi, S. P., & Brain, C. (1996). Stable carbon and nitrogen isotope analysis of bone collagen in Papio cynocephalus ursinus: Comparison with ungulates and Homo sapiens from southern and East African environments. South African Journal of Science, 92, 209–212.Google Scholar
  54. Tieszen, L., Hein, D., Qvortrup, S., Troughton, J., & Imbamba, S. (1979). Use of δ13C values to determine vegetation selectivity in east African herbivores. Oecologia, 37, 351–359.Google Scholar
  55. Ungar, P. S., Grine, F. E., Teaford, M. F., & El-Zaatari, S. (2006). Dental microwear and diets of African early Homo. Journal of Human Evolution, 50, 78–95.PubMedCrossRefGoogle Scholar
  56. van der Merwe, N. J., Thackeray, J. F., Lee-Thorp, J. A., & Luyt, J. (2003). The carbon isotope ecology and diet of Australopithecus africanus at Sterkfontein, South Africa. Journal of Human Evolution, 44, 581–597.PubMedCrossRefGoogle Scholar
  57. Vogel, J. C. (1978). Isotopic assessment of the dietary habits of ungulates. South African Journal of Science, 74, 298–301.Google Scholar
  58. Walker, A. C. (1981). Diet and teeth: Dietary hypothesis and human evolution. Philosophical Transactions of the Royal Society of London, 292B, 57–64.CrossRefGoogle Scholar
  59. Washburn, S. L., & DeVore, I. (1961). The social life of baboons. Scientific American, 204, 62–71.CrossRefGoogle Scholar
  60. Whiten, A., Bryne, R. W., Barton, R. A., Waterman, P. G., & Henzi, S. P. (1991). Dietary and foraging strategies of baboons. Philosophical Transactions of the Royal Society of London, 334B, 187–197.CrossRefGoogle Scholar
  61. Wood, B., & Strait, D. (2004). Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution, 46, 119–162.PubMedCrossRefGoogle Scholar
  62. Wrangham, R. W., McGrew, W. C., de Waal, F. B. M., Heltne, P. G., & Marquardt, L. A. (1994). Chimpanzee cultures. Cambridge MA: Harvard University Press.Google Scholar
  63. Yeakel, J. D., Bennett, N. C., Koch, P. L., & Dominy, N. J. (2007). The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proceedings of the Royal Society of London, B274, 1723–1730.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daryl Codron
    • 1
    • 2
  • Julia A. Lee-Thorp
    • 3
  • Matt Sponheimer
    • 4
  • Darryl de Ruiter
    • 5
  • Jacqui Codron
    • 2
  1. 1.School of Biological and Conservation SciencesUniversity of KwaZulu-NatalScottsvilleSouth Africa
  2. 2.Department of ArchaeologyUniversity of Cape TownRondeboschSouth Africa
  3. 3.Department of Archaeological SciencesBradford UniversityBradfordUK
  4. 4.Department of AnthropologyUniversity of Colorado at BoulderBoulderUSA
  5. 5.Department of AnthropologyTexas A & M UniversityCollege StationUSA

Personalised recommendations