Skip to main content

Advertisement

Log in

Do Teachers’ Instructional Practices Moderate Equity in Mathematical and Scientific Literacy?: an Investigation of the PISA 2012 and 2015

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

A Correction to this article was published on 01 August 2018

This article has been updated

Abstract

Many efforts have been made to reach educational equity, especially to reduce mathematics and science achievement gaps by students’ socioeconomic status. Across countries, educators strive to reform traditional teacher-centered instructional approaches to more student-centered/inquiry-based instruction to improve equity in education. In this context, this study examines whether relationships between socioeconomic status and scientific or mathematical literacy are moderated by student-centered instruction. Ten countries covering a wide range of achievement levels as well as equity in education are selected for an international comparison. A linear regression analysis is applied to student achievement, equity, and frequency of student-centered instruction data from the PISA 2012 and PISA 2015. We find mixed results: As student-centered instruction is offered more frequently, the gap in mathematical and scientific literacy between low and high socioeconomic status is generally narrowed or maintained. In most countries, students’ mathematical and scientific literacy scores are expected to decrease across all socioeconomic status as student-centered instruction is given more frequently. The findings necessitate further scrutiny of how teachers implement student-centered instruction in various educational systems. This further research need to consider the complexity of implementation related to sociological and pedagogical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 01 August 2018

    This correction stands to correct Fig. 1 and Table 4 in the original article. This correction is due to Fig. 1 not having the red circles showing the strength of the socioeconomic gradient mean performance of the 10 selected countries. Additionally, some coefficients in Table 4 were not interpretable, which should be corrected.

References

  • Acar, O. (2015). Examination of science learning equity through argumentation and traditional instruction noting differences in socio-economic status. Science Education International, 26(1), 24–41.

    Google Scholar 

  • Akkus, R., Gunel, M., & Hand, B. (2007). Comparing an inquiry-based approach known as the science writing heuristic to traditional science teaching practices: Are there differences? International Journal of Science Education, 29(14), 1745–1765.

    Article  Google Scholar 

  • American Library Association (2014). Equality and equity of access: What’s the difference. Retrieved April, 25, 2014 from http://www.ala.org/advocacy/intfreedom/equalityequity.

  • Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.

    Article  Google Scholar 

  • Artigue, M. l., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6.

    Article  Google Scholar 

  • Atwater, M. M. (1996). Social constructivism: Infusion into the multicultural science education research agenda. Journal of Research in Science Teaching, 33(8), 821–837.

    Article  Google Scholar 

  • Atwater, M. M. (2000). Equity for Black Americans in precollege science. Science Education, 84(2), 154–179.

    Article  Google Scholar 

  • Ballenger, C. (1997). Social identities, moral narratives, and scientific argumentation: Science talk in bilingual classroom. Language and Education, 11(1), 1–14. https://doi.org/10.1080/09500789708666715.

    Article  Google Scholar 

  • Banks, J. A. (1997). Educating citizens in a multicultural society. New York, NY: Teachers College Press.

    Google Scholar 

  • Barba, R. H. (1995). Science in the multicultural classroom: A guide to teaching and learning. Needham Heights, MA: Allyn and Bacon.

    Google Scholar 

  • Bos, K., & Kuiper, W. (1999). Modelling TIMSS data in a European comparative perspective: Exploring influencing factors on achievement in mathematics in grade 8. Educational Research and Evaluation, 5(2), 157–179. https://doi.org/10.1076/edre.5.2.157.6946.

    Article  Google Scholar 

  • Bulkley, K. E. (2013). Conceptions of equity: How influential actors view a contested concept. Peabody Journal of Education, 88(1), 10–21. https://doi.org/10.1080/0161956X.2013.752309.

    Article  Google Scholar 

  • Cavagnetto, A. R. (2010). Argument to foster scientific literacy: A review of argument interventions in K–12 science contexts. Review of Educational Research, 80(3), 336–371. https://doi.org/10.3102/0034654310376953.

    Article  Google Scholar 

  • Cavagnetto, A. R., & Hand, B. (2012). The importance of embedding argument within science classrooms. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice and research (pp. 39–53). New York, NY: Springer.

    Chapter  Google Scholar 

  • Darling-Hammond, L. (1998). Unequal opportunity: Race and education. The Brookings Review, 16(2), 28–32.

    Article  Google Scholar 

  • Delpit, L. (1988). The silenced dialogue: Power and pedagogy in educating other people’s children. Harvard Educational Review, 58(3), 280–299.

    Article  Google Scholar 

  • Foy, P., Brossman, B., & Galia, J. (Eds.). (2012). Scaling the TIMSS and PIRLS 2011 achievement data. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College and International Association for the Evaluation of Educational Achievement (IEA).

    Google Scholar 

  • Fraser, B. (2015). Encyclopedia of science education. In R. Gunstone (Ed.), Classroom learning environments (pp. 154–157). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Hatano, G., & Inagaki, K. (1998). Cultural contexts of schooling revisited: A review of “the learning gap” from a cultural psychology perspective. In S. G. Paris & H. M. Wellman (Eds.), Global prospects for education: Development, culture, and schooling (pp. 79–104). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Heckman, J. J. (2011). The economics of inequality: The value of early childhood education. American Educator, 35(1), 31–35.

    Google Scholar 

  • Keys, C. W., & Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 613–645. https://doi.org/10.1002/tea.1023.

    Article  Google Scholar 

  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1.

    Article  Google Scholar 

  • Laukaityte, I., & Wiberg, M. (2017). Using plausible values in secondary analysis in large-scale assessments. Communications in Statistics - Theory and Methods, 46(22), 11341–11357. https://doi.org/10.1080/03610926.2016.1267764.

  • Lee, O. (2005). Science education with English language learners: Synthesis and research agenda. Review of Educational Research, 75(4), 491–530.

    Article  Google Scholar 

  • Lee, O., & Luykx, A. (2007). Science education and student diversity: Race/ethnicity, language, culture, and socioeconomic status. In S. Abell & N. Lederman (Eds.), Handbook of research on science education (Vol. 1, pp. 171–197). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Lee, V. E., Smith, J. B., & Croninger, R. G. (1997). How high school organization influences the equitable distribution of learning in mathematics and science. Sociology of Education, 70(2), 128–150.

    Article  Google Scholar 

  • Lefstein, A. (2008). Changing classroom practice through the English National Literacy Strategy: A micro-interactional perspective. American Educational Research Journal, 45(3), 701–737. https://doi.org/10.3102/000283120831625.

    Article  Google Scholar 

  • Loughran, J. (1994). Bridging the gap: An analysis of the needs of second-year science teachers. Science Education, 78(4), 365–386.

    Article  Google Scholar 

  • Luft, J. A. (2001). Changing inquiry practices and beliefs: The impact of an inquiry-based professional development programme on beginning and experienced secondary science teachers. International Journal of Science Education, 23(5), 517–534. https://doi.org/10.1080/09500690121307.

    Article  Google Scholar 

  • Lynch, S. J. (2000). Equity and science education reform. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Maaß, K., & Artigue, M. l. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM Mathematics Education, 45, 779–795. https://doi.org/10.1007/s11858-013-0528-0.

    Article  Google Scholar 

  • Maerten-Rivera, J., Ahn, S., Lanier, K., Diaz, J., & Lee, O. (2016). Effect of a multiyear intervention on science achievement of all students including English language learners. Elementary School Journal, 116(4), 600–624.

    Article  Google Scholar 

  • Marshall, J. C. (2009). The creation, validation, and reliability associated with the EQUIP (Electronic Quality of Inquiry Protocol): A measure of inquiry-based instruction. Paper presented at the annual meeting of National Association of Researchers of Science Teaching (NARST), Garden Grove, CA.

  • Magnusson, S., & Palincsar, A. (2005). Teaching to promote the development of scientific knowledge and reasoning about light at the elementary school level. In J. Bransford & S. Donovan (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 421–474). Washington, DC: National Academies Press. https://doi.org/10.17226/10126.

  • Martin, D. B. (2009). Researching race in mathematics education. Teachers College Record, 111(2), 295–338.

    Google Scholar 

  • Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71–85. https://doi.org/10.1002/j.2168-9830.2008.tb00955.x.

    Article  Google Scholar 

  • Mercer, N. (2008). Changing our minds: A commentary on ‘conceptual change: A discussion of theoretical, methodological and practical challenges for science education’. Cultural Studies of Science Education, 3(2), 351-362.

    Article  Google Scholar 

  • Mistler-Jackson, M., & Songer, N. B. (2000). Student motivation and internet technology: Are students empowered to learn science? Journal of Research in Science Teaching, 37(5), 459–479.

    Article  Google Scholar 

  • Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2009). Risk factors for learning-related behavior problems at 24 months of age: Population-based estimates. Journal of Abnormal Child Psychology, 37(3), 401–413.

    Article  Google Scholar 

  • National Research Council [NRC]. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academies Press.

    Google Scholar 

  • Newman Jr., W. J., Abell, S. K., Hubbard, P. D., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.

    Article  Google Scholar 

  • Oakes, J. (1990). Multiplying inequalities: The effects of race, social class, and tracking on opportunities to learn mathematics and science. Santa Monica, CA: RAND.

    Google Scholar 

  • OECD. (2009). Highlights from ‘education at a glance 2008’. Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2010). PISA 2009 results: Overcoming social background–equity in learning opportunities and outcomes (Vol. 2). Paris, France: OECD Publishing. https://doi.org/10.1787/9789264091504-en.

    Google Scholar 

  • OECD. (2013). PISA 2012 results: Excellence through equity giving every student the chance to succeed (Vol. 2). Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2014). PISA 2012 technical report. Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2016a). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. Paris, France: OECD Publishing.

    Book  Google Scholar 

  • OECD. (2016b). PISA 2015 results in focus. Paris, France: OECD Publishing.

    Book  Google Scholar 

  • OECD. (2016c). PISA 2015 results (volume I): Excellence and equity in education. Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2016d). PISA 2015 results (volume II): Policies and practices for successful schools. Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2017). PISA 2015 technical report. Paris, France: OECD Publishing.

    Google Scholar 

  • OECD. (2008). Ten steps to equity in education. Paris, France: OECD Policy Brief. Retrieved November 3, 2015, from http://www.oecd.org/education/school/39989494.pdf.

  • Richardson, T. (1996). Foucauldian discourse: Power and truth in urban and regional policy making. European Planning Studies, 4(3), 279–292.

    Article  Google Scholar 

  • Rodriguez, A. J. (1998). Busting open the meritocracy myth: Rethinking equity and student achievement in science education. Journal of Women and Minorities in Science and Engineering, 4(2–3), 195–216.

    Article  Google Scholar 

  • Roth, W. M. (1996). Teacher questioning in an open-inquiry learning environment: Interactions of context, content, and student responses. Journal of Research in Science Teaching, 33(7), 709–736.

    Article  Google Scholar 

  • Schütz, G., West, M. R., & Wöbmann, L. (2007). School accountability, autonomy, choice, and the equity of student achievement international evidence from PISA 2003 (OECD Education Working Papers, No. 14). Paris, France: OECD Publishing. https://doi.org/10.1787/246374511832.

    Google Scholar 

  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145.

    Article  Google Scholar 

  • Townley, B. (1993). Foucault, power/knowledge, and its relevance for human resource management. Academy of Management Review, 18(3), 518–545.

    Article  Google Scholar 

  • von Secker, C. (2002). Effects of inquiry-based teacher practices on science excellence and equity. Journal of Educational Research, 95(3), 151–160. https://doi.org/10.1080/00220670209596585.

    Article  Google Scholar 

  • Yore, L., Bisanz, G. L., & Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689–725.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihyun Hwang.

Appendix

Appendix

Table 5 Linear models of the relationships between mathematical literacy and index of economic, social, and cultural status moderated by student-oriented instruction in PISA 2012
Table 6 Linear models of the relationships between scientific literacy and index of economic, social, and cultural status moderated by inquiry-based instruction in PISA 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Choi, K.M., Bae, Y. et al. Do Teachers’ Instructional Practices Moderate Equity in Mathematical and Scientific Literacy?: an Investigation of the PISA 2012 and 2015. Int J of Sci and Math Educ 16 (Suppl 1), 25–45 (2018). https://doi.org/10.1007/s10763-018-9909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-018-9909-8

Keywords

Navigation