Advertisement

INVESTIGATING THE IMPACT OF TEACHERS’ PHYSICS CK ON STUDENTS OUTCOMES

  • Annika Ohle
  • William J. Boone
  • Hans E. Fischer
Article

Abstract

Decreasing student interest and achievement during the transition from elementary to secondary school is an international problem, especially in science education. The question of what factors influence this decline has been a widely discussed topic. This study focuses on investigating the relationship of elementary school teachers’ content knowledge (CK) in physics upon the student outcomes of interest and achievement. Data were collected from K-4 elementary school teachers (N = 58) and their students (N = 1,326). Besides questionnaire surveys of teachers and students, one science lesson on the topic “states of matter and phase transitions” of each classroom was videotaped for assessing teaching quality. Analyses from a triangulation of data could not identify an impact of teachers’ CK upon students’ interest. However, the sequencing of learning processes within a lesson was found to be a positive predictor for students’ achievement, although only minimal time was spent on reflective phases during the lessons.

Key words

elementary school mixed methods physics Rasch measurement students’ achievement students’ interest teachers’ content knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell, S. K. (2007). Research on science teachers’ knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education. Mahwah, NJ: Erlbaum.Google Scholar
  2. Alonzo, A. C., Kobarg, M. & Seidel, T. (2012). Pedagogical content knowledge as reflected in teacher-student interactions: Analysis of two video cases. Journal of Research in Science Teaching, 49(10), 1211–1239.CrossRefGoogle Scholar
  3. Appleton, K. (2003). How do beginning elementary school teachers cope with science? Toward an understanding of science teaching practice. Research in Science Education, 33(1), 1–25.CrossRefGoogle Scholar
  4. Arzi, H. J. & White, R. T. (2008). Change in teachers’ knowledge of subject matter: A 17-year longitudinal study. Science Education, 92, 221–251.CrossRefGoogle Scholar
  5. Baumert, J., Kunter, M., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M. & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom and student progress [Electronic version]. American Educational Research Journal, 47, 133–180. Retrieved November 2, 2012, from http://aer.sagepub.com/content/47/1/133.full.pdf+html.CrossRefGoogle Scholar
  6. Boone, W. J. & Scantlebury, K. (2006). The role of Rasch analysis when conducting science education research utilizing multiple-choice tests. Science Education, 90(2), 253–269.Google Scholar
  7. Boone, W. J., Townsend, J. S. & Staver, J. (2011). Using Rasch theory to guide the practice of survey development and survey data analysis in science education and to inform science reform efforts: An exemplar utilizing STEBI self-efficacy data. Science Education, 95(2), 258–280.Google Scholar
  8. Boone, W. J., Staver, J. R. & Yale, M. S. (2013). Rasch analysis in the human sciences.Google Scholar
  9. Brophy, J. E. & Good, T. L. (1986). Teacher behavior and student achievement. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 328–375). London: Macmillan.Google Scholar
  10. Carroll, J. B. (1989). The Carroll Model. A 25-Year retrospective and prospective view. The Educational Researcher, 18, 26–31.CrossRefGoogle Scholar
  11. Cochran-Smith, M. & Lytle, S. L. (1999). Relationships of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24(1), 249–305.CrossRefGoogle Scholar
  12. Dupriez, D., Dumay, X. & Vause, A. (2008). How do school systems manage pupils’ heterogeneity? Comparative Education Review, 52(2), 245–273.CrossRefGoogle Scholar
  13. Ebenezer, J. V. & Zoller, U. (1993). Grade 10 students’ perceptions of and attitudes toward science teaching and school science. Journal of Research in Science Teaching, 30(2), 175–186.CrossRefGoogle Scholar
  14. Field, A. (2005). Discovering statistics using SPSS. London: Sage.Google Scholar
  15. Fischer, H. E., Borowski, A. & Tepner, O. (2012). Professional knowledge of science teachers. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 435–448). Dordrecht: Springer Netherlands.Google Scholar
  16. Fölling-Albers, M. & Hartinger, A. (1998). Interest of girls and boys in Elementary School. In L. Hoffmann, A. Krapp, K. A. Renninger & J. Baumert (Eds.), Interest and learning (pp. 175–183). Germany: Institute for Science Education at the University of Kiel.Google Scholar
  17. Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 3–17). Dordrecht: Kluwer.Google Scholar
  18. Good, T. L. (1979). Teacher effectiveness in the elementary school. Journal of Teacher Education, 30(2), 52–64.CrossRefGoogle Scholar
  19. Greeno, J. G. & van de Sande, C. (2007). Perspectival understanding of conceptions and conceptual growth in interaction. Educational Psychologist, 42(1), 9–23.CrossRefGoogle Scholar
  20. Hackling, M. (2006). Primary Connections: A new approach to primary science and to teacher professional learning. Proceedings from the ACER Research Conference: Boosting Science Learning—what will it take? (pp. 74–79). Melbourne: Australian Council for Educational Research.Google Scholar
  21. Hattie, J. (2003). Teachers make a difference: What is the research evidence? Retrieved from http://www.decd.sa.gov.au/limestonecoast/files/pages/new%20page/ZLC/teachers_make_a_difference.pdf.
  22. Helmke, A. (2003). Unterrichtsqualität erfassen, bewerten, verbessern [Measuring, rating and improving quality of instruction]. Seelze: Kallmeyer.Google Scholar
  23. Hill, H. C., Rowan, B. & Ball, D. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.CrossRefGoogle Scholar
  24. Hofstein, A. & Lunetta, V. N. (2004). The laboratory in science education: Foundation for the twenty-first century. Science Education, 88(1), 28–54.CrossRefGoogle Scholar
  25. Kauertz, A. (2007). Schwierigkeitserzeugende Merkmale physikalischer Leistungstestaufgaben [Difficulties generating characteristics of physics test items]. Berlin: Logos.Google Scholar
  26. Keller, M., Neumann, K. & Fischer, H. E. (2010). Lehrerenthusiasmus im Physikunterricht - Ergebnisse zum physikbezogenen Interesse von Lehrkräften in Deutschland, Finnland und der Schweiz – [Teacher enthisiasm in physics classrooms – Results of physics related teacher-interest in Germany, Finland and Switzerland]. In D. Höttecke (Ed.), Entwicklung naturwissenschaftlichen Denkens zwischen Phänomen und Systematik. Gesellschaft für Didaktik der Chemie und Physik, Jahrestagung in Dresden 2009 (pp. 392–394). Berlin: Lit.Google Scholar
  27. Kessler, S.J. (2011). Mathematisches Fachwissen von gymnasialen Mathematiklehrkräften. Eine empirische Analyze des Konstrukts und dessen Korrelation mit Personen- und Unterrichtsvariablen [Mathematical content knowledge of upper secondary mathematics teachers: An empirical analysis of construct and correlations with person and teaching variables]. Retrieved from http://mediatum.ub.tum.de/doc/1071144/1071144.pdf
  28. Lange, K. (2010). Zusammenhänge zwischen naturwissenschaftsbezogenem fachspezifisch-pädagogischem Wissen von Grundschullehrkräften und Fortschritten im Verständnis naturwissenschaftlicher Konzepte bei Grundschülerinnen und –schülern [Relation between elementary school teachers’ pedagogical content knowledge and students’ improvement in understanding science concepts] (Doctoral dissertation). Retrieved from http://miami.uni-muenster.de/servlets/DerivateServlet/Derivate-5861/diss_lange.pdf.
  29. Liu, X. & Boone, W. J. (2006). Applications of Rasch measurement in science education. Maple Grove, Minn: JAM Press.Google Scholar
  30. Lück, G. & Demuth, R. (1998). Naturwissenschaften im frühen Kindesalter [Science in early childhood]. CHEMKON, 5, 71–78.CrossRefGoogle Scholar
  31. Martin, M. O., Mullis, I. V. S., Foy, P. & Stanco, G. M. (2012). TIMSS 2011 International Results in Science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  32. Ministerium für Schule und Weiterbildung (2008). Richtlinien und Lehrpläne für die Grundschule in Nordrheinwestfalen [Guidelines and curricula for elementary schools in Northrhine Westphalia]. Frechen: Ritterbach.Google Scholar
  33. Neumann, K., Kauertz, A., & Fischer, H. E. (2012). Quality of instruction in science education. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second International Handbook of Science Education (pp. 247–258). Dordrecht: Springer Netherlands.Google Scholar
  34. Nilsson, P. & van Driel, J. (2011). How will we understand what we teach?—Elementary student teachers’ perceptions of their development of knowledge and attitudes towards physics. Research in Science Education, 41(4), 541–560.CrossRefGoogle Scholar
  35. Ohle, A. (2010). Primary school teachers' content knowledge in physics and its impact on teaching and stundents' achievement. Studien zum Physik- und Chemielernen: Vol. 110. Berlin: Logos-Verl.Google Scholar
  36. Organization for Economic Cooperation and Development (2001). Knowledge and skills for life. First results from the OECD program for international student assessment (PISA) 2000. Paris: OECD.Google Scholar
  37. Organization for Economic Cooperation and Development (2013). Chapter 5. A profile of student performance in science. In OECD (Ed.), PISA 2012 Results: What students know and can do (volume I): Student performance in mathematics, reading and science. Paris: OECD.Google Scholar
  38. Osborne, J., Simon, S. & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.CrossRefGoogle Scholar
  39. Oser, F. K. & Baeriswyl, F. J. (2001). Choreographies of teaching: Bridging instruction to learning. In V. Richardson (Ed.), AERA’s handbook of research on teaching (4th ed., pp. 1031–1065). Washington: American Educational Research Association.Google Scholar
  40. Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage.Google Scholar
  41. Renninger, A. (1998). The roles of individual interest(s) and gender in learning: An overview of research on Preschool and Elementary School-aged children/students. In L. Hoffmann, A. Krapp, K. A. Renninger & J. Baumert (Eds.), Interest and learning (pp. 165–174). Kiel: Institute for Science Education at the University of Kiel.Google Scholar
  42. Reyer, T. (2004). Oberflächenmerkmale und Tiefenstrukturen im Unterricht [Characteristics of surface structure and deep structure in lessons]. Berlin: Logos.Google Scholar
  43. Schiefele, U., Krapp, A. & Winteler, A. (1992). Interest as a predictor of academic achievement: A meta-analysis of research. In K. A. Renniger, S. Hidi & A. Krapp (Eds.), The role of interest in learning and development. Hillsdale, NJ: Erlbaum.Google Scholar
  44. Seidel, T. & Prenzel, M. (2006). Stability of teaching patterns in physics instruction: Findings from a video study. Learning and Instruction, 16(3), 228–240.CrossRefGoogle Scholar
  45. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.CrossRefGoogle Scholar
  46. Speering, W. & Rennie, L. (1996). Students’ perceptions about science: The impact of transition from elementary to secondary school. Research in Science Education, 26(3), 283–298.CrossRefGoogle Scholar
  47. Stern, E. (2002). Wie abstrakt lernt das Grundschulkind? [How abstract is elementary school students’ learning?]. In H. Petillon (Ed.), Handbuch Grundschulforschung: Bd. 5. Individuelles und soziales Lernen [Handbook of Elementary School Research: Vol. 5. Individual and Social Learning] in (pp. 22–28). Opladen: Leske + Budrich.Google Scholar
  48. Tytler, R. (2007). Re-imagining Science Education: Engaging students in science for Australia’s future. Camberwell, Australia: ACER Press.Google Scholar
  49. Vygotsky, L. S. (1987). Problems of general psychology. In R. W. Rieber (Ed.), The collected works of L. S. Vygotsky (Vol. 1). New York: Plenum Press.Google Scholar
  50. Wackermann, R., Trendel, G. & Fischer, H. E. (2010). Evaluation of a Theory of Instructional Sequences for Physics Instruction. International Journal of Science Education, 32(7), 963–985.Google Scholar
  51. Wirtz, M. & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität [Interrater agreement and interrater reliability]. Göttingen: Hogrefe.Google Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2014

Authors and Affiliations

  • Annika Ohle
    • 1
  • William J. Boone
    • 2
  • Hans E. Fischer
    • 3
  1. 1.Institute for School Development Research (IFS)TU DortmundDortmundGermany
  2. 2.Department of Educational PsychologyMiami UniversityOxfordUSA
  3. 3.University Duisburg- EssenEssenGermany

Personalised recommendations