Starting currents of modes in cylindrical cavities with mode-converting corrugations for second-harmonic gyrotrons

Abstract

A self-consistent system of equations (known as single-mode gyrotron equations) is extended to describe the beam-wave interaction in a cylindrical gyrotron cavity with mode-converting longitudinal corrugations, which produce coupling of azimuthal basis modes. The system of equations is applied to investigate the effect of corrugations on starting currents of the cavity modes. For these modes, eigenvalues, ohmic losses, field structure, and beam-wave coupling coefficients are investigated with respect to the corrugation parameters. It is shown that properly sized mode-converting corrugations are capable of improving the selectivity properties of cylindrical cavities for second-harmonic gyrotrons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    E.A. Nanni, A.B. Barnes, R.G. Griffin, R.J. Temkin, IEEE Trans. Terahertz Sci. Technol. (2011) https://doi.org/10.1109/TTHZ.2011.2159546

  2. 2.

    M.Y. Glyavin, T. Idehara, S.P. Sabchevski, IEEE Trans. THz Sci. Technol. (2015) https://doi.org/10.1109/TTHZ.2015.2442836

  3. 3.

    M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, IEEE Trans. Electron Devices (2005) https://doi.org/10.1109/TED.2005.845818

  4. 4.

    V.L. Bratman, Yu.K. Kalynov, V.N. Manuilov, Phys. Rev. Lett. (2009) https://doi.org/10.1103/PhysRevLett.102.245101

  5. 5.

    Y.J. Huang, L.H. Yeh, K.R. Chu, Phys. Plasmas (2014) https://doi.org/10.1063/1.4900415

  6. 6.

    S.H. Kao, C.C. Chiu, K.R. Chu, Phys. Plasmas (2012) https://doi.org/10.1063/1.3684663

  7. 7.

    N.S. Ginzburg, M.Y. Glyavin, A.M. Malkin, V.N. Manuilov, R.M. Rozental, A.S. Sedov, A.S. Sergeev, V.Y. Zaslavsky, I.V. Zotova, T. Idehara, IEEE Trans. Plasma Sci. (2016) https://doi.org/10.1109/TPS.2016.2585307

  8. 8.

    V.I. Shcherbinin, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2944647

  9. 9.

    V.I. Shcherbinin, Y.K. Moskvitina, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2020.2996179

  10. 10.

    I.V. Bandurkin, A.P. Fokin, M.Y. Glyavin, A.G. Luchinin, I.V. Osharin, A.V. Savilov, IEEE Electron Device Lett. (2020) https://doi.org/10.1109/LED.2020.3010445

  11. 11.

    V.I. Shcherbinin, K.A. Avramidis, M. Thumm, J. Jelonnek, J. Infrared Millim. Terahertz Waves (2021) https://doi.org/10.1007/s10762-020-00760-9

  12. 12.

    La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, Int. J. Infrared Millim. Waves (2007) https://doi.org/10.1007/s10762-007-9215-y

  13. 13.

    A.C. Torrezan, S.T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, R.G. Griffin, IEEE Trans. Plasma Sci. (2010) https://doi.org/10.1109/TPS.2010.2046617

  14. 14.

    V.I. Shcherbinin, T.I. Tkachova, V.I. Tkachenko, IEEE Trans. Electron Devices (2018) https://doi.org/10.1109/TED.2017.2769219

  15. 15.

    S.K. Jawla, R.G. Griffin, I.A. Mastovsky, M.A. Shapiro, R.J. Temkin, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2019.2953658

  16. 16.

    V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, V.I. Tkachenko, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2730252

  17. 17.

    S. Spira-Hakkarainen, K.E. Kreischer, R.J. Temkin, IEEE Trans. Plasma Sci. (1990) https://doi.org/10.1109/27.55903

  18. 18.

    K.D. Hong, G.F. Brand, T. Idehara, J. Appl. Phys. (1993) https://doi.org/10.1063/1.354265

  19. 19.

    K.A. Avramides, C.T. Iatrou, J.L. Vomvoridis, IEEE Trans. Plasma Sci. (2004) https://doi.org/10.1109/TPS.2004.828781

  20. 20.

    Yu.S. Oparina, A.V. Savilov, J. Infrared Millim. Terahertz Waves (2018) https://doi.org/10.1007/s10762-018-0499-x

  21. 21.

    V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Problems Atomic Sci. Technol. 6 (106), 255 (2016)

    Google Scholar 

  22. 22.

    V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2017) https://doi.org/10.1007/s10762-017-0386-x

  23. 23.

    K.A. Avramides, J.L. Vomvoridis, C.T. Iatrou, AIP Conference Proceedings (2006) https://doi.org/10.1063/1.2158787

  24. 24.

    Q. Zhao, S. Yu, T. Zhang, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2756635

  25. 25.

    M.M. Melnikova, A.G. Rozhnev, N.M. Ryskin, Y. Tatematsu, M. Fukunari, Y. Yamaguchi, T. Saito, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2764874

  26. 26.

    O. Dumbrajs, E. Borie, Int. J. Electron. (1988) https://doi.org/10.1080/00207218808945230

  27. 27.

    D. Wagner, G. Gantenbein, W. Kasparek, M. Thumm, Int. J. Infrared Millim. Waves (1995) https://doi.org/10.1007/BF02274811

  28. 28.

    G.I. Zaginaylov, V.I. Shcherbinin, K. Schünemann, M.Yu. Glyavin, Proc. 8th MSMW (2013) https://doi.org/10.1109/MSMW.2013.6622127

  29. 29.

    A.V. Maksimenko, G.I. Zaginaylov, V.I. Shcherbinin, Physics of Particles and Nuclei Letters (2015) https://doi.org/10.1134/S1547477115020168

  30. 30.

    A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2019) https://doi.org/10.1007/s10762-019-00589-x

  31. 31.

    A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2893888

  32. 32.

    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2019) https://doi.org/10.1007/s10762-019-00623-y

  33. 33.

    V.A. Flyagin, V.I. Khizhnyak, V.N. Manuilov, M.A. Moiseev, A.B. Pavelyev, V.E. Zapevalov, N.A. Zavolsky, Int. J. Infrared Millim. Waves (2003) https://doi.org/10.1023/A:1021667030616

  34. 34.

    S.P. Savaidis, Z.C. Ioannidis, N.A. Stathopoulos, IEEE Trans. Microwave Theory Tech. (2012) https://doi.org/10.1109/TMTT.2012.2209440

  35. 35.

    Z.C. Ioannidis, K.A. Avramidis, I.G. Tigelis, J. Infrared Millim. Terahertz Waves (2015) https://doi.org/10.1007/s10762-015-0152-x

  36. 36.

    Z.C. Ioannidis, K.A. Avramidis, I.G. Tigelis, IEEE Trans. Electron Devices (2016) https://doi.org/10.1109/TED.2016.2518217

  37. 37.

    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Proc. Int. Conf. Math. Methods Electromagn. Theory (2018) https://doi.org/10.1109/MMET.2018.8460433

  38. 38.

    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems Atomic Sci. Technol. 6 (118), 67 (2018)

    Google Scholar 

  39. 39.

    Z.C. Ioannidis, O. Dumbrajs, I.G. Tigelis, IEEE Trans. Plasma Sci. (2006) https://doi.org/10.1109/TPS.2006.876518

  40. 40.

    Z.C. Ioannidis, K.A. Avramides, G.P. Latsas, I.G. Tigelis, IEEE Trans. Plasma Sci. (2011) https://doi.org/10.1109/TPS.2011.2118766

  41. 41.

    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems Atomic Sci. Technol. 4 (122), 31 (2019)

    Google Scholar 

  42. 42.

    C.T. Iatrou, S. Kern, A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. (1996) https://doi.org/10.1109/22.481385

  43. 43.

    V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. (2019) https://doi.org/10.1109/TMTT.2018.2882493

  44. 44.

    V.I. Shcherbinin, V.I. Fesenko, T.I. Tkachova, V.R. Tuz, Phys. Rev. Applied (2020) https://doi.org/10.1103/PhysRevApplied.13.024081

  45. 45.

    V.L. Bratman, M.A Moiseev, M.I. Petelin, R.É. Érm, Radiophys. Quantum Electron. (1973) https://doi.org/10.1007/BF01030898

  46. 46.

    V.A. Flyagin, A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, IEEE Trans. Microwave Theory Tech. (1977) https://doi.org/10.1109/TMTT.1977.1129149

  47. 47.

    S. Kern, K.A. Avramides, M.H. Beringer, O. Dumbrajs, Y. Liu, Proc. Int. Conf. Infrared Millim. Terahertz Waves (2008) https://doi.org/10.1109/ICIMW.2008.4665584

  48. 48.

    S.N. Vlasov, L.I. Zagryadskaya, M.I. Petelin, Radiophys. Quantum Electron. (1973) https://doi.org/10.1007/BF01080919

  49. 49.

    A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, Proc. IEEE Ukrainian Microwave Week (2020) https://doi.org/10.1109/UkrMW49653.2020.9252719

Download references

Availability of Data and Material

Data are available from the authors upon reasonable request.

Code Availability

Not applicable

Funding

The work of Vitalii I. Shcherbinin was supported by a Georg Forster Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Tetiana I. Tkachova and Vitalii I. Shcherbinin. The first draft of the manuscript was written by Vitalii I. Shcherbinin, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tkachova, T.I., Shcherbinin, V.I., Tkachenko, V.I. et al. Starting currents of modes in cylindrical cavities with mode-converting corrugations for second-harmonic gyrotrons. J Infrared Milli Terahz Waves (2021). https://doi.org/10.1007/s10762-021-00772-z

Download citation

Keywords

  • Gyrotron
  • Corrugated cavity
  • Starting current
  • Mode conversion
  • Cyclotron harmonic