A Constant Corrugation Circular Waveguide for High-Pass Signal Diagnostics in ECEI System at 75–110 GHz


In this work, a high-pass waveguide filter with constant circular corrugations is presented. The proposed design allows propagation of HE11 mode which has similar Gaussian characteristics of the signals present in a fusion reactor. The device is designed to operate in W-band, i.e., 75–110 GHz, and it generates a wide passband of approximately 30 GHz. The internal corrugations in the proposed design are kept constant which makes fabrication relatively simpler. The proposed high-pass metallic waveguide is numerically analyzed, simulated, and fabricated for experimental validation. The measured transmission co-efficient (S21) shows good agreement with the simulated result and passband of 28 GHz was obtained. The high-pass filter can be effectively used in the electron cyclotron emission imaging (ECEI) system used in fusion plasma experiments for signal diagnostics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    R. Aymar, IEEE TRANSACTIONS ON PLASMA SCIENCE, 25 (1997) 1187-1195.

    Article  Google Scholar 

  2. 2.

    R.R. Hirani, S.K. Pathak, S.N. Shah, D.K. Sharma, AEU - International Journal of Electronics and Communications, 83 (2018) 123-130.

    Article  Google Scholar 

  3. 3.

    Manfred, Thumm, Plasma Physics and Controlled Fusion, 45 (2003) A143.

  4. 4.

    N. Isei , A. Isayama, S. Ishida, M. Sato, T. Oikawa, T. Fukuda, A. Nagashima, N. Iwama, T. J. Team, Fusion Engineering and Design, 53 (2001) 213-220.

    Article  Google Scholar 

  5. 5.

    M. Zerbini, F. Bombarda, A. Doria, G. Galatola-Teka, E. Giovenale, 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), 1-2.

  6. 6.

    C.M.Muscatello, X. Ren, M. Chen, A.G. Spear, A.V. Pham, T. Phan, M. Mamidanna, J. Lai, D. Fu, F. Hu, C.W. Domier, N.C. Lahmunn Jr, EPs onference on Plasma Diagnostics, 2015

  7. 7.

    C.M. Muscatello, C.W. Domier, X. Hu, G.J. Kramer, N.C. Luhmann, X. Ren, P. Riemenschneider, A. Spear, B.J. Tobias, E. Valeo, L. Yu, Review of Scientific Instruments, 85 (2014) 11D702.

    Article  Google Scholar 

  8. 8.

    C.M. Muscatello, C.W. Domier, X. Hu, N.C. Luhmann, X. Ren, P. Riemenschneider, A. Spear, L. Yu, B. Tobias, IEEE Transactions on Plasma Science, 42 (2014) 2734-2735.

    Article  Google Scholar 

  9. 9.

    I.G.J. Classen, C.W. Domier, N.C. Luhmann, A.V. Bogomolov, W. Suttrop, J.E. Boom, B.J. Tobias, A.J.H. Donné, Review of Scientific Instruments, 85 (2014) 11D833.

    Article  Google Scholar 

  10. 10.

    L. Yu, C.W. Domier, X. Kong, S. Che, B. Tobias, H. Park, C.X. Yu, N.C. Luhmann, Journal of Instrumentation, 7 (2012) C02055.

    Google Scholar 

  11. 11.

    Y. Wang, B. Tobias, Y.T. Chang, J.H. Yu, M. Li, F. Hu, M. Chen, M. Mamidanna, T. Phan, A.V. Pham, J. Gu, X. Liu, Y. Zhu, C.W. Domier, L. Shi, E. Valeo, G.J. Kramer, D. Kuwahara, Y. Nagayama, A. Mase, N.C. Luhmann, Nuclear Fusion, 57 (2017) 072007.

    Article  Google Scholar 

  12. 12.

    D.H. Kim, W. Mohyuddin, D.S. Woo, H.C. Choi, K.W. Kim, Review of Scientific Instruments, 88 (2017) 034704.

    Article  Google Scholar 

  13. 13.

    B. Tobias, C.W. Domier, T. Liang, X. Kong, L. Yu, G.S. Yun, H.K. Park, I.G.J. Classen, J.E. Boom, A.J.H. Donné, T. Munsat, R. Nazikian, M. Van Zeeland, R.L. Boivin, N.C. Luhmann, Review of Scientific Instruments, 81 (2010) 10D928.

    Article  Google Scholar 

  14. 14.

    T. Liang, B. Tobias, X. Kong, C.W. Domier, N.C. Luhmann, W. Lee, G.S. Yun, H.K. Park, Review of Scientific Instruments, 81 (2010) 10D909.

  15. 15.

    M. Xu, X. Xu, Y. Wen, J. Ma, J. Xie, B. Gao, T. Lan, A. Liu, Y. Yu, Y. He, B. Wan, L. Hu, X. Gao, Plasma Science and Technology, 13 (2011) 167-171.

    Article  Google Scholar 

  16. 16.

    Y. Zhu, Z. Zhao, W.D. Liu, J. Xie, X. Hu, C.M. Muscatello, C.W. Domier, N.C. Luhmann, M. Chen, X. Ren, B.J. Tobias, G. Zhuang, Z. Yang, Review of Scientific Instruments, 85 (2014) 11D854.

  17. 17.

    J. Bornemann, Y. Seng Yong, German Microwave Conference Digest of Papers, (2010), 202-205.

  18. 18.

    Q. Li, Q. Wang, G. Wu, Y. Tan, International Workshop on Microwave and Millimeter Wave Circuits and System Technology,(2012), 1-4.

  19. 19.

    W.J. Wu, R. Zhang, X.X. Fan, IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), (2016), 798-800.

  20. 20.

    J.T. Do, B. Yusha, X. Liu, IEEE MTT-S International Microwave Symposium (IMS), (2016), 1-4.

  21. 21.

    X. Yu, L. Tang, S. Houjun, IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), (2016), 833-835.

  22. 22.

    X. Shang, M. Lancaster, Y. Dong, Electronics Letters, 53 (2017) 488-490.

    Article  Google Scholar 

  23. 23.

    J.L. Doane, Fusion Science and Technology, 53 (2008) 159-173.

    Article  Google Scholar 

  24. 24.

    C. PJB, O. AD, Corrugated Horns for Microwave Antennas, Peter Oeregrinus Ltd, London, 1984.

  25. 25.

    Computer Simulation Technology. CST Microwave Studio Suite. (2016). [online]. Available: http://www.cst.com

  26. 26.

    P. McElhinney, C.R. Donaldson, L. Zhang, A. W. Cross, W. He., 2nd IET Annual Active and Passive RF Devices Seminar, 1 (2014)

  27. 27.

    H. V. Dhuda, P. N. Patel, Hiteshkumar B. Pandya, RF and Microwave Computer-Aided Engineering, 30 (2020), 1-9.

    Google Scholar 

Download references


This publication is an outcome of the R&D work undertaken in the Project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (Formerly Media Lab Asia). The authors thank the Institute for Plasma Research director, ITER-India project director, and Electronics Engineering Department, SVNIT-Surat, for supporting this work. The authors are also thankful to Dr. A. A. Shaikh from Mechanical Engineering Department, SVNIT, for helping in device fabrication.

Author information



Corresponding author

Correspondence to Hirenkumar V. Dhuda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhuda, H.V., Patel, P.N. & Pandya, H.B. A Constant Corrugation Circular Waveguide for High-Pass Signal Diagnostics in ECEI System at 75–110 GHz. J Infrared Milli Terahz Waves (2020). https://doi.org/10.1007/s10762-020-00720-3

Download citation


  • Circular corrugated waveguide
  • Hybrid mode
  • High-pass filter
  • Electron cyclotron emission imaging