Non-uniformity Correction Algorithm for THz Array Detectors in High-Resolution Imaging Applications

Abstract

One of the major challenges in THz imaging using array detectors is the responsivity non-uniformities across different pixels. This is caused by different pixels responding differently and non-linearly to the same incident field. Unfortunately, such responsivity non-uniformities cannot be corrected by the traditional amplitude normalization method, which only accounts for linear responsivity. Therefore, we propose a pixel calibration scheme that corrects a non-linear responsivity of individual pixels. This calibration scheme is particularly useful in a multi-frame sub-pixel imaging technique, which assumes that all pixels have the same characteristics. Using this imaging technique would allow us to achieve an image pixel size smaller than a detector pixel size, in much faster acquisition time compared with most existing systems employing a single-pixel detector. We demonstrate the performance of our pixel calibration approach through THz imaging of various objects by the multi-frame sub-pixel imaging technique. For a square aluminum piece as a test sample, total variation (TV) in the THz image is reduced by at least 12% after applying the pixel calibration. Finally, we present example uses of our proposed technique in moisture distribution imaging. The proposed technique holds promises towards rapid THz high-resolution imaging in non-destructive testing (NDT) and quality control (QC) applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, Journal of Physics D: Applied Physics 50(4), 043001 (2017). https://doi.org/10.1088/1361-6463/50/4/043001.

  2. 2.

    D.M. Mittleman, Opt. Express 26(8), 9417 (2018). https://doi.org/10.1364/OE.26.009417. http://www.opticsexpress.org/abstract.cfm?URI=oe-26-8-9417.

  3. 3.

    B.B. Hu, M.C. Nuss, Opt. Lett. 20(16), 1716 (1995). https://doi.org/10.1364/OL.20.001716. http://ol.osa.org/abstract.cfm?URI=ol-20-16-1716.

  4. 4.

    W. Liu, C. Liu, F. Chen, J. Yang, L. Zheng, Scientific Reports 6, 35799 (2016). https://doi.org/10.1038/srep35799.

  5. 5.

    G.G. Hernandez-Cardoso, S.C. Rojas-Landeros, M. Alfaro-Gomez, A.I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A.R. Castillo-Guzman, H.L. Lopez-Lemus, E. Castro-Camus, Scientific Reports 7, 42124 (2017). https://doi.org/10.1038/srep42124.

  6. 6.

    N.M. Burford, M.O. El-Shenawee, C.B. O’neal, K.J. Olejniczak, Int. J. Emerg. Technol. Adv. Eng 4(1), 395 (2014).

  7. 7.

    Y.L. Hor, J.F. Federici, R.L. Wample, Appl. Opt. 47(1), 72 (2008). https://doi.org/10.1364/AO.47.000072. http://ao.osa.org/abstract.cfm?URI=ao-47-1-72.

  8. 8.

    A. Redo-Sanchez, G. Salvatella, R. Galceran, E. Roldós, J.A. García-Reguero, M. Castellari, J. Tejada, Analyst 136, 1733 (2011). https://doi.org/10.1039/C0AN01016B.

  9. 9.

    H. Ge, Y. Jiang, Z. Xu, F. Lian, Y. Zhang, S. Xia, Opt. Express 22(10), 12533 (2014). https://doi.org/10.1364/OE.22.012533 http://www.opticsexpress.org/abstract.cfm?URI=oe-22-10-12533.

  10. 10.

    G. Ok, H.J. Kim, H.S. Chun, S.W. Choi, Food Control 42, 284 (2014). https://doi.org/10.1016/j.foodcont.2014.02.021. http://www.sciencedirect.com/science/article/pii/S0956713514000905.

  11. 11.

    W. Momose, H. Yoshino, Y. Katakawa, K. Yamashita, K. Imai, K. Sako, E. Kato, A. Irisawa, E. Yonemochi, K. Terada, Results in Pharma Sciences 2, 29 (2012). https://doi.org/10.1016/j.rinphs.2012.04.001. http://www.sciencedirect.com/science/article/pii/S2211286312000048.

  12. 12.

    K. Su, Y. Shen, J.A. Zeitler, IEEE Transactions on Terahertz Science and Technology 4(4), 432 (2014). https://doi.org/10.1109/TTHZ.2014.2325393.

  13. 13.

    J.C. Dickinson, T.M. Goyette, A.J. Gatesman, C.S. Joseph, Z.G. Root, R.H. Giles, J. Waldman, W.E. Nixon, in: Proc. SPIE 6212, Terahertz for Military and Security Applications IV, vol. 62120Q (2006), vol. 62120Q. https://doi.org/10.1117/12.667998.

  14. 14.

    E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H.G. Meyer, C. Schäffel, Journal of Infrared, Millimeter, and Terahertz Waves 36(10), 879 (2015). https://doi.org/10.1007/s10762-015-0170-8.

  15. 15.

    D.A. Robertson, D.G. Macfarlane, R.I. Hunter, S.L. Cassidy, N. Llombart, E. Gandini, T. Bryllert, M. Ferndahl, H. Lindström, J. Tenhunen, H. Vasama, J. Huopana, T. Selkälä, A.J. Vuotikka, in: Proc. SPIE 10634, Passive and Active Millimeter-Wave Imaging XXI, vol. 1063409 (2018), vol. 1063409. https://doi.org/10.1117/12.2304376.

  16. 16.

    W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, Applied Physics Letters 93(12), 121105 (2008). https://doi.org/10.1063/1.2989126.

  17. 17.

    R.I. Stantchev, D.B. Phillips, P. Hobson, S.M. Hornett, M.J. Padgett, E. Hendry, Optica 4(8), 989 (2017). https://doi.org/10.1364/OPTICA.4.000989. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-8-989.

  18. 18.

    D.L. Donoho, IEEE Transactions on Information Theory 52(4), 1289 (2006). https://doi.org/10.1109/TIT.2006.871582,.

  19. 19.

    M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, R.G. Baraniuk, IEEE Signal Processing Magazine 25(2), 83 (2008). https://doi.org/10.1109/MSP.2007.914730.

  20. 20.

    R. A., S. F., Terahertz detectors and focal plane arrays (De Gruyter, 2011), vol. 19, chap. Opto-Electronics Review, p. 346. https://doi.org/10.2478/s11772-011-0033-3. https://www.degruyter.com/view/j/oere.2011.19.issue-3/s11772-011-0033-3/s11772-011-0033-3.xml.

  21. 21.

    S. Boppel, A. Lisauskas, H. Roskos, in: Handbook of Terahertz Technology for Imaging, Sensing and Communications, ed. by D. Saeedkia, Woodhead Publishing Series in Electronic and Optical Materials (Woodhead Publishing, 2013), pp. 231–271. https://doi.org/10.1533/9780857096494.2.231. http://www.sciencedirect.com/science/article/pii/B9780857092359500082.

  22. 22.

    M. Sakhno, J. Gumenjuk-Sichevska, F. Sizov, in: 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON) (2014), pp. 1–4. https://doi.org/10.1109/MIKON.2014.6899988.

  23. 23.

    Sung Cheol Park, Min Kyu Park, Moon Gi Kang, IEEE Signal Processing Magazine 20(3), 21 (2003). https://doi.org/10.1109/MSP.2003.1203207.

  24. 24.

    B. Huang, H. Babcock, X. Zhuang, Cell 143(7), 1047 (2010). https://doi.org/10.1016/j.cell.2010.12.002.

  25. 25.

    K. Ahi, IEEE Transactions on Terahertz Science and Technology 7(6), 747 (2017). https://doi.org/10.1109/TTHZ.2017.2750690.

  26. 26.

    J. Dong, J.B. Jackson, M. Melis, D. Giovanacci, G.C. Walker, A. Locquet, J.W. Bowen, D.S. Citrin, Opt. Express 24(23), 26972 (2016). https://doi.org/10.1364/OE.24.026972. http://www.opticsexpress.org/abstract.cfm?URI=oe-24-23-26972.

  27. 27.

    X. Li, Y. Hu, X. Gao, D. Tao, B. Ning, Signal Processing 90(2), 405 (2010). https://doi.org/10.1016/j.sigpro.2009.05.028. http://www.sciencedirect.com/science/article/pii/S0165168409002618.

  28. 28.

    J. Archana, D.P. Aishwarya, Int. J. Eng. Sci. Comp 6, 8729 (2016).

Download references

Acknowledgements

We would like to thank all our intern students for helping us in data collection. We also thank Mr. Woraprach Kusolthossakul for help in correcting grammatical mistakes.

Funding

This project was financially supported by Food and Feed Innovation Center, National Science and Technology Development Agency (NSTDA), Thailand.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rungroj Jintamethasawat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jintamethasawat, R., Thanapirom, C., Rattanawan, P. et al. Non-uniformity Correction Algorithm for THz Array Detectors in High-Resolution Imaging Applications. J Infrared Milli Terahz Waves (2020). https://doi.org/10.1007/s10762-020-00698-y

Download citation

Keywords

  • Terahertz
  • Non-uniformity calibration
  • Fixed-pattern variation
  • High-resolution imaging