Skip to main content
Log in

Selectivity Properties of Cylindrical Waveguides with Longitudinal Wall Corrugations for Second-Harmonic Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Spatial harmonic method is applied to investigate selectivity properties of longitudinally corrugated waveguides for potential application in second-harmonic gyrotrons. The effect of corrugations on frequencies, ohmic losses, and mode conversion of guiding TE modes is studied in details. Numerical results are presented for operating second-harmonic and competing first-harmonic modes of a 0.4-THz gyrotron with corrugated RF structure. It is shown that longitudinal wall corrugations of proper dimensions can ensure increase in ohmic losses and decrease in beam-wave coupling strength for the first-harmonic modes, while their effect on the operating mode is only slight. This demonstrates improved selectivity properties of corrugated waveguides for second-harmonic gyrotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.S. Nusinovich, M.K.A. Thumm, M.I. Petelin, J Infrared Milli Terahz Waves (2014) https://doi.org/10.1007/s10762-014-0050-7

    Article  Google Scholar 

  2. E.A. Nanni, A.B. Barnes, R.G. Griffin, R.J. Temkin, IEEE Trans. THz Sci. Tech. (2011) https://doi.org/10.1109/TTHZ.2011.2159546

    Article  Google Scholar 

  3. T. Idehara, S.P. Sabchevski, J Infrared Milli Terahz Waves (2017) https://doi.org/10.1007/s10762-016-0314-5

    Article  Google Scholar 

  4. V.I. Shcherbinin, V.I. Tkachenko, J Infrared Milli Terahz Waves (2017) https://doi.org/10.1007/s10762-017-0386-x

    Article  Google Scholar 

  5. C.T. Iatrou, S. Kern, A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. (1996) https://doi.org/10.1109/22.481385

    Article  Google Scholar 

  6. J.J Barroso, R.A. Correa, P. Jose de Castro, IEEE Trans. Microw. Theory Techn. (1998) https://doi.org/10.1109/22.709460

    Article  Google Scholar 

  7. O. Dumbrajs, G.S. Nusinovich, IEEE Trans. Plasma Sci. (2004) https://doi.org/10.1109/TPS.2004.829976

    Article  Google Scholar 

  8. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, in Proc. 17th MMET (2018), pp.238–241 https://doi.org/10.1109/MMET.2018.8460433

  9. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems of Atomic Science and Technology, 6(118), 67 (2018)

    Google Scholar 

  10. Z.C. Ioannidis, K.A. Avramidis, G.P. Latsas, I.G. Tigelis, IEEE Trans. Plasma Sci. (2011) https://doi.org/10.1109/TPS.2011.2118766

    Article  Google Scholar 

  11. K.R. Chu, D. Dialetis, Int J Infrared Milli Waves (1984) https://doi.org/10.1007/BF01014033

    Article  Google Scholar 

  12. Z.C. Ioannidis, O. Dumbrajs, I.G. Tigelis, IEEE Trans. Plasma Sci. (2006) https://doi.org/10.1109/TPS.2006.876518

    Article  Google Scholar 

  13. V.A. Flyagin, V.I. Khizhnyak, V.N. Manuilov, M.A. Moiseev, A.B. Pavelyev, V.E. Zapevalov, N.A. Zavolsky, J Infrared Milli Terahz Waves (2003) https://doi.org/10.1023/A:1021667030616

    Article  Google Scholar 

  14. Z.C. Ioannidis, K.A. Avramidis, I.G. Tigelis, IEEE Trans. Electron Devices (2016) https://doi.org/10.1109/TED.2016.2518217

    Article  Google Scholar 

  15. G.I. Zaginaylov, V.I. Shcherbinin, K. Schuenemann, M.Yu. Glyavin, in Proc. 8th MSMW (2013), pp.523–525 https://doi.org/10.1109/MSMW.2013.6622127

  16. A.V. Maksimenko, G.I. Zaginaylov, V.I. Shcherbinin, Phys. Part. Nuclei Lett. (2015) https://doi.org/10.1134/S1547477115020168

    Article  Google Scholar 

  17. A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2893888

    Article  Google Scholar 

  18. A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, J Infrared Milli Terahz Waves (2019) https://doi.org/10.1007/s10762-019-00589-x

    Article  Google Scholar 

  19. V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Problems of Atomic Science and Technology, 4(98), 89 (2015)

    Google Scholar 

  20. B.Z. Katsenelenbaum, High-frequency electrodynamics (Wiley-VCH, Weinheim, 2006), pp. 87–91.

  21. K.R. Chu, A.T. Lin, IEEE Trans. Plasma Sci. (1988) https://doi.org/10.1109/27.3798

    Article  Google Scholar 

  22. S.N. Vlasov, L.I. Zagryadskaya, M.I. Petelin, Radiophys Quantum Electron (1973) https://doi.org/10.1007/BF01080919

    Article  Google Scholar 

  23. L. Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, J Infrared Milli Terahz Waves (2007) https://doi.org/10.1007/s10762-007-9215-y

    Article  Google Scholar 

  24. A.C. Torrezan, Seong-Tae Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin,A.B. Barnes, R.G. Griffin, IEEE Trans. Plasma Sci. (2010) https://doi.org/10.1109/TPS.2010.2046617

    Article  Google Scholar 

  25. O. Dumbrajs, T. Idehara, S. Sabchevski, J Infrared Milli Terahz Waves (2010) https://doi.org/10.1007/s10762-010-9700-6

    Article  Google Scholar 

  26. V.I. Shcherbinin, T.I. Tkachova, V.I. Tkachenko, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2769219

    Article  Google Scholar 

  27. V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, V.I. Tkachenko, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2730252

    Article  Google Scholar 

  28. V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. (2019) https://doi.org/10.1109/TMTT.2018.2882493

    Article  Google Scholar 

  29. S.H. Kao, C.C. Chiu, K.R. Chu, Physics of Plasmas (2012) https://doi.org/10.1063/1.3684663

    Article  Google Scholar 

  30. K.A. Avramidis, G. Aiello, S. Alberti et al., Nuclear Fusion (2019) https://doi.org/10.1088/1741-4326/ab12f9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachova, T.I., Shcherbinin, V.I. & Tkachenko, V.I. Selectivity Properties of Cylindrical Waveguides with Longitudinal Wall Corrugations for Second-Harmonic Gyrotrons. J Infrared Milli Terahz Waves 40, 1021–1034 (2019). https://doi.org/10.1007/s10762-019-00623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00623-y

Keywords

Navigation