High-Resolution THz Spectroscopy and Solid-State Density Functional Theory Calculations of Polycyclic Aromatic Hydrocarbons

Abstract

High-resolution and broadband THz spectra of the crystals of nine polycyclic aromatic hydrocarbons (PAHs) are presented. Five PAHs are comprised of ortho-fused benzene rings and the other four of peri-fused benzene rings. THz mode assignment is performed by using the anthracene and pyrene crystals as examples. The performance of the PBE functional augmented by Grimme’s two dispersion correction terms, D* and D3, respectively, are rigorously evaluated against the experimental criteria of frequency and isotope shift (IS). The D* and D3 terms use empirical and semi-classical approach for correcting the London-type dispersion interactions, respectively. The nature of each THz mode simulated by PBE-D* and that by PBE-D3 is quantitatively compared in terms of the percentage contributions of the intermolecular and the intramolecular vibrations to the vibrational energy. We find that the two methods have equivalent performance in reproducing the frequencies, ISs, and nature of THz modes of both the anthracene and pyrene crystals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    B. M. Fischer, H. Helm, and P. U. Jepsen, Chemical recognition with broadband THz spectroscopy,. Proc. IEEE, 95, no. 8, pp. 1592–1604, 2007, https://doi.org/10.1109/jproc.2007.898904.

    Article  Google Scholar 

  2. 2.

    I. Hosako et al., At the dawn of a new era in terahertz technology,. Proc. IEEE, vol. 95, no. 8, pp. 1611–1623, 2007, https://doi.org/10.1109/jproc.2007.898844.

    Article  Google Scholar 

  3. 3.

    J. H. Son, Terahertz electromagnetic interactions with biological matter and their applications,. J. Appl. Phys., vol. 105, no. 10, 2009, Art no. 102033, https://doi.org/10.1063/1.3116140.

  4. 4.

    P. U. Jepsen, D. G. Cooke, and M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications,. Laser & Photonics Reviews, vol. 5, no. 1, pp. 124–166, 2011, https://doi.org/10.1002/lpor.201000011.

    Article  Google Scholar 

  5. 5.

    T. Nagatsuma, Terahertz technologies: present and future,. Ieice Electronics Express, vol. 8, no. 14, pp. 1127–1142, 2011, https://doi.org/10.1587/elex.8.1127.

    Article  Google Scholar 

  6. 6.

    Y. C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,. Int. J. Pharm., vol. 417, no. 1–2, pp. 48–60, 2011, https://doi.org/10.1016/j.ijpharm.2011.01.012.

    Article  Google Scholar 

  7. 7.

    R. M. Smith and M. A. Arnold, Terahertz Time-Domain Spectroscopy of Solid Samples: Principles, Applications, and Challenges,. Applied Spectroscopy Reviews, vol. 46, no. 8, pp. 636–679, 2011, https://doi.org/10.1080/05704928.2011.614305.

    Article  Google Scholar 

  8. 8.

    A. I. McIntosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, Terahertz spectroscopy: a powerful new tool for the chemical sciences?,. Chem. Soc. Rev., vol. 41, no. 6, pp. 2072–2082, 2012, https://doi.org/10.1039/c1cs15277g.

    Article  Google Scholar 

  9. 9.

    A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, Review of Terahertz Technology Readiness Assessment and Applications,. J Infrared Millim. Terahertz Waves, vol. 34, no. 9, pp. 500–518, Sep 2013, https://doi.org/10.1007/s10762-013-9998-y.

    Article  Google Scholar 

  10. 10.

    Y. Li, L. Xu, Q. Zhou, G. Xiong, Y. Shen, and X. Deng, A comparative evaluation of the activities of thiol group and hydroxyl group in low-frequency vibrations using terahertz spectroscopy and DFT calculations,. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 214, pp. 246–251 2019 2019/05/05/, https://doi.org/10.1016/j.saa.2019.02.018.

    Article  Google Scholar 

  11. 11.

    C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, Relaxation in glassforming liquids and amorphous solids,. J. Appl. Phys., vol. 88, no. 6, pp. 3113–3157, 2000, https://doi.org/10.1063/1.1286035.

    Article  Google Scholar 

  12. 12.

    U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids, J. Opt. Soc. Am. B, vol. 26, no. 9, pp. A113-A125, 2009, https://doi.org/10.1364/JOSAB.26.00A113.

    Article  Google Scholar 

  13. 13.

    J. T. Kindt and C. A. Schmuttenmaer, Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy,. The Journal of Physical Chemistry, vol. 100, no. 24, pp. 10373–10379, 1996, https://doi.org/10.1021/jp960141g.

    Article  Google Scholar 

  14. 14.

    N. Yamamoto, K. Ohta, A. Tamura, and K. Tominaga, Broadband Dielectric Spectroscopy on Lysozyme in the Sub-Gigahertz to Terahertz Frequency Regions: Effects of Hydration and Thermal Excitation,. J. Phys. Chem. B, vol. 120, no. 21, pp. 4743–4755, 2016, https://doi.org/10.1021/acs.jpcb.6b01491.

    Article  Google Scholar 

  15. 15.

    N. Yamamoto et al., Effect of Temperature and Hydration Level on Purple Membrane Dynamics Studied Using Broadband Dielectric Spectroscopy from Sub-GHz to THz Regions, J. Phys. Chem. B, vol. 122, no. 4, pp. 1367–1377, Feb 2018, https://doi.org/10.1021/acs.jpcb.7b10077.

    Article  Google Scholar 

  16. 16.

    L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous materials,. Rev. Mod. Phys., vol. 83, no. 2, pp. 587–645, 2011. https://doi.org/10.1103/RevModPhys.83.587.

    Article  Google Scholar 

  17. 17.

    U. Buchenau, C. Schönfeld, D. Richter, T. Kanaya, K. Kaji, and R. Wehrmann, Neutron Scattering Study of the Vibration-Relaxation Crossover in Amorphous Polycarbonates,. Phys. Rev. Lett., vol. 73, no. 17, pp. 2344–2347, 1994, https://doi.org/10.1103/PhysRevLett.73.2344.

    Article  Google Scholar 

  18. 18.

    S. Kastner, M. Köhler, Y. Goncharov, P. Lunkenheimer, and A. Loidl, High-frequency dynamics of type B glass formers investigated by broadband dielectric spectroscopy,. J. Non-Cryst. Solids, vol. 357, no. 2, pp. 510–514, 2011, https://doi.org/10.1016/j.jnoncrysol.2010.06.074.

    Article  Google Scholar 

  19. 19.

    F. Zhang, H.-W. Wang, K. Tominaga, and M. Hayashi, Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory,. Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 6, no. 4, pp. 386–409, 2016, https://doi.org/10.1002/wcms.1256.

    Article  Google Scholar 

  20. 20.

    F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, Application of THz Vibrational Spectroscopy to Molecular Characterization and the Theoretical Fundamentals: An Illustration Using Saccharide Molecules,. Chemistry – An Asian Journal, vol. 12, no. 3, pp. 324–331, 2017, https://doi.org/10.1002/asia.201601419.

    Article  Google Scholar 

  21. 21.

    Y. Li, A. Lukacs, S. Bordacs, J. Moczar, M. Nyitrai, and J. Hebling, The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations,. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 191, pp. 8–15, 2018, https://doi.org/10.1016/j.saa.2017.09.035.

    Article  Google Scholar 

  22. 22.

    M. Born and K. Huang, Dynamical Theory of Crystal Lattice, Clarendon Press, Oxford Classic Texts in the Physical Science, 1998.

  23. 23.

    C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc, Press, Eighth Edition, 2004.

  24. 24.

    A. Togo and I. Tanaka, First principles phonon calculations in materials science,. Scripta Mater, vol. 108, pp. 1–5, 2015, https://doi.org/10.1016/j.scriptamat.2015.07.021.

    Article  Google Scholar 

  25. 25.

    J. Chen, L. Hu, J. Deng, and X. Xing, Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications,. Chem. Soc. Rev., vol. 44, no. 11, pp. 3522–3567, 2015, https://doi.org/10.1039/C4CS00461B.

    Article  Google Scholar 

  26. 26.

    W. Miller, C. W. Smith, D. S. Mackenzie, and K. E. Evans, Negative thermal expansion: a review,. Journal of Materials Science vol. 44, no. 20, pp. 5441–5451, 2009, https://doi.org/10.1007/s10853-009-3692-4.

    Article  Google Scholar 

  27. 27.

    Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, and G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics,. Nature, vol. 473, no. 7345, pp. 66–69, May 2011, https://doi.org/10.1038/nature09996.

    Article  Google Scholar 

  28. 28.

    T. M. Tritt and M. A. Subramanian, Thermoelectric materials, phenomena, and applications: A bird's eye view,. MRS Bull, vol. 31, no. 3, pp. 188–194, 2006, https://doi.org/10.1557/mrs2006.44.

    Article  Google Scholar 

  29. 29.

    B. Fultz, Vibrational thermodynamics of materials,. Prog. Mater Sci, vol. 55, no. 4, pp. 247–352, 2010, https://doi.org/10.1016/j.pmatsci.2009.05.002.

    Article  Google Scholar 

  30. 30.

    H. X. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage,. Energy & Environmental Science, vol. 7, no. 3, pp. 1185–1192, 2014, https://doi.org/10.1039/c3ee42573h.

    Article  Google Scholar 

  31. 31.

    R. Yang, X. Y. Wang, Y. Zhang, H. Y. Mao, P. Lan, and D. G. Zhou, Facile Synthesis of Mesoporous Silica Aerogels from Rice Straw Ash-based Biosilica via Freeze-drying,. Bioresources, vol. 14, no. 1, pp. 87–98, 2019, https://doi.org/10.15376/biores.14.1.87-98.

    Article  Google Scholar 

  32. 32.

    S. Califano and V. Schettino, Vibrational relaxation in molecular crystals,. Int. Rev. Phys. Chem, vol. 7, no. 1, pp. 19–57, 1988, https://doi.org/10.1080/01442358809353204.

    Article  Google Scholar 

  33. 33.

    P. G. Klemens, Anharmonic Decay of Optical Phonons, Phys. Rev, vol. 148, no. 2, pp. 845–848, 1966, https://doi.org/10.1103/PhysRev.148.845.

    Article  Google Scholar 

  34. 34.

    M. D. King, W. Ouellette, and T. M. Korter, Noncovalent Interactions in Paired DNA Nucleobases Investigated by Terahertz Spectroscopy and Solid-State Density Functional Theory, (in English). J. Phys. Chem. A, vol. 115, no. 34, pp. 9467–9478, 2011, https://doi.org/10.1021/Jp111878h.

    Article  Google Scholar 

  35. 35.

    F. Nishimura, H. Hoshina, Y. Ozaki, and H. Sato, Isothermal crystallization of poly (glycolic acid) studied by terahertz and infrared spectroscopy and SAXS/WAXD simultaneous measurements,. Polym. J, vol. 51, no. 2, pp. 237–245, 2019, https://doi.org/10.1038/s41428-018-0150-7.

    Article  Google Scholar 

  36. 36.

    M. T. Ruggiero, J. A. Zeitler, and A. Erba, Intermolecular anharmonicity in molecular crystals: interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine,. Chem. Commun. vol. 53, no. 26, pp. 3781–3784, 2017, https://doi.org/10.1039/C7CC00509A.

    Article  Google Scholar 

  37. 37.

    F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, S. Lee, and T. Nishino, Elucidation of Chiral Symmetry Breaking in a Racemic Polymer System with Terahertz Vibrational Spectroscopy and Crystal Orbital Density Functional Theory,. The Journal of Physical Chemistry Letters, vol. 7, no. 22, pp. 4671–4676, 2016 https://doi.org/10.1021/acs.jpclett.6b02213.

    Article  Google Scholar 

  38. 38.

    J. Neu, H. Nikonow, and C. A. Schmuttenmaer, Terahertz Spectroscopy and Density Functional Theory Calculations of dl-Norleucine and dl-Methionine,. J. Phys. Chem. A, vol. 122, no. 28, pp. 5978–5982, 2018 https://doi.org/10.1021/acs.jpca.8b04978.

    Article  Google Scholar 

  39. 39.

    F. Zhang et al., Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes, J. Chem. Phys., vol. 140, no. 17, p. 174509, 2014, https://doi.org/10.1063/1.4873421.

    Article  Google Scholar 

  40. 40.

    F. Zhang et al., Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region,. RSC Adv. vol. 4, no. 1, pp. 269–278, 2014, https://doi.org/10.1039/C3RA44285C.

    Article  Google Scholar 

  41. 41.

    S. D. Costa et al., Resonant Raman spectroscopy on enriched C-13 carbon nanotubes,. Carbon, vol. 49, no. 14, pp. 4719–4723, 2011, https://doi.org/10.1016/j.carbon.2011.06.076.

    Article  Google Scholar 

  42. 42.

    T. Sasaki, T. Tanabe, and J. i. Nishizawa, 2016 Frequency accuracy and resolution of a GaP continuous-wave terahertz spectrometer, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp. 1–2, https://doi.org/10.1109/IRMMW-THz.2016.7758380.

  43. 43.

    T. Sasaki, T. Sakamoto, and M. Otsuka, Detection of Impurities in Organic Crystals by High-Accuracy Terahertz Absorption Spectroscopy,. Anal. Chem, vol. 90, no. 3, pp. 1677–1682, 2018, https://doi.org/10.1021/acs.analchem.7b03220.

    Article  Google Scholar 

  44. 44.

    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,. J. Chem. Phys, vol. 132, no. 15, 2010, 154104, https://doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  45. 45.

    R. Dovesi et al., CRYSTAL17 munual, University of Torino, Torino, 2017.

    Google Scholar 

  46. 46.

    R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich−Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, et al., Quantummechanical condensed matter simulations with CRYSTAL, vol. 8, no. 4, e1360, 2018, https://doi.org/10.1002/wcms.1360.

  47. 47.

    L. Maschio, B. Kirtman, R. Orlando, and M. Rèrat, Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method,. J. Chem. Phys., vol. 137, no. 20, p. 204113, 2012, https://doi.org/10.1063/1.4767438.

    Article  Google Scholar 

  48. 48.

    M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi, Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code,. J. Chem. Phys., vol. 129, no. 24, p. 244110, 2008, https://doi.org/10.1063/1.3043366.

    Article  Google Scholar 

  49. 49.

    R. Dovesi et al., CRYSTAL14 User’s Manual. Torino: University of Torino, 2014.

    Google Scholar 

  50. 50.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. vol. 77, no. 18, 3865-3868, 1996. https://doi.org/10.1103/PhysRevLett.77.3865.

  51. 51.

    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions,. J. Chem. Phys., vol. 72, no. 1, pp. 650–654, 1980, https://doi.org/10.1063/1.438955.

    Article  Google Scholar 

  52. 52.

    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction,. J. Comput. Chem, vol. 27, no. 15, pp. 1787–1799, 2006, https://doi.org/10.1002/jcc.20495.

    Article  Google Scholar 

  53. 53.

    S. Grimme, J. Antony, T. Schwabe, and C. Muck-Lichtenfeld, Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules,. Organic & Biomolecular Chemistry, vol. 5, no. 5, pp. 741–758, 2007, https://doi.org/10.1039/b615319b.

    Article  Google Scholar 

  54. 54.

    C. Morgado, M. A. Vincent, I. H. Hillier, and X. Shan, Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules?,. PCCP, vol. 9, no. 4, pp. 448–451, 2007, https://doi.org/10.1039/b615263e.

    Article  Google Scholar 

  55. 55.

    T. van Mourik, Assessment of Density Functionals for Intramolecular Dispersion-Rich Interactions,. J. Chem. Theory Comput, vol. 4, no. 10, pp. 1610–1619, 2008, https://doi.org/10.1021/ct800231f.

    Article  Google Scholar 

  56. 56.

    Y. Bouteiller, J. C. Poully, C. Desfrancois, and G. Gregoire, Evaluation of MP2, DFT, and DFT-D Methods for the Prediction of Infrared Spectra of Peptides,. J. Phys. Chem. A, vol. 113, no. 22, pp. 6301–6307, 2009, https://doi.org/10.1021/jp901570r.

    Article  Google Scholar 

  57. 57.

    B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P. Ugliengo, B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals,. Crystengcomm, vol. 10, no. 4, pp. 405–410, 2008, https://doi.org/10.1039/b715018k.

    Article  Google Scholar 

  58. 58.

    S. L. Chaplot, N. Lehner, and G. S. Pawley, THE STRUCTURE OF ANTHRACENE-D10 AT 16-K USING NEUTRON-DIFFRACTION,. Acta Crystallographica Section B-Structural Science, vol. 38, no. FEB, pp. 483–487, 1982, https://doi.org/10.1107/s0567740882003239.

    Article  Google Scholar 

  59. 59.

    Y. Kai, F. Hama, N. Yasuoka, and N. Kasai, Structural chemistry of layered cyclophanes. III. Molecular structures of [2.2](2,7)pyrenophane-1,1′-diene and pyrene (redetermined) at −160°C, Acta Crystallographica Section B, vol. 34, no. 4, pp. 1263–1270, 1978, https://doi.org/10.1107/s0567740878005312.

    Article  Google Scholar 

  60. 60.

    P. H. C. Eilers, 2003 A Perfect Smoother, . Anal. Chem., vol. 75, no. 14, pp. 3631–3636, https://doi.org/10.1021/ac034173t.

    Article  Google Scholar 

  61. 61.

    P. H. C. Eilers, Parametric Time Warping,. Anal. Chem, vol. 76, no. 2, pp. 404–411, 2004 https://doi.org/10.1021/ac034800e.

  62. 62.

    H. Houjou, Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?,. J. Chem. Phys., vol. 135, no. 15, p. 154111, 2011, https://doi.org/10.1063/1.3652102.

    Article  Google Scholar 

  63. 63.

    H. Houjou, Modelling intra- and intermolecular vibrations under the harmonic oscillator approximation: from symmetry-adapted to coarse-grained coordinate approaches,. J. Math. Chem vol. 55, no. 2, pp. 532–551, 2017, https://doi.org/10.1007/s10910-016-0692-x.

    MathSciNet  Article  MATH  Google Scholar 

  64. 64.

    F. Zhang, K. Tominaga, M. Hayashi, and H.-W. Wang, 2014 Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory, in Proc. SPIE 9275, Infrared, Millimeter-Wave, and Terahertz Technologies III, C.-L. Zhang. X.-C. Zhang. M. Tani, Ed., vol. 92750D, Beijing, , pp. 92750D-9. https://doi.org/10.1117/12.2071528

Download references

Acknowledgments

All the authors thank Dr. Kaoru Ohta for his illuminating discussions. A part of this research is based on the Cooperative Research Project of Research Center for Biomedical Engineering. The theoretical computations were performed using the Research Center for Computational Science, Okazaki, Japan.

Funding

F.Z. received support from the JSPS Grant-In-Aid project (18K05034). M.H. received financial support from the Ministry of Science and Technology (MOST) of Taiwan under MOST 107-2113-M-002-012.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Keisuke Tominaga or Michitoshi Hayashi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 92 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wang, H., Tominaga, K. et al. High-Resolution THz Spectroscopy and Solid-State Density Functional Theory Calculations of Polycyclic Aromatic Hydrocarbons. J Infrared Milli Terahz Waves 41, 1378–1392 (2020). https://doi.org/10.1007/s10762-019-00621-0

Download citation

Keywords

  • Terahertz spectroscopy
  • Phonon mode
  • Solid-state density functional theory
  • London dispersion force
  • Isotope shift