Skip to main content
Log in

W-band Aperture-Type Scanning Near-Field Microscopy Using Tapered Plastic Probe

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

An aluminum-coated PMMA tapered probe with 50 μm aperture was employed in near-field imaging at 110 GHz. The probe was chosen for near-field imaging experiments according to finite-difference time-domain electromagnetic simulation, analysis of antenna resonance, and impedance matching consideration. Imaging of a printed circuit board with a repeated structure of 450-μm-wide metal strips spaced by 550-μm-wide dielectric demonstrated a spatial resolution of 15 μm (λ/200), which is not just 100 times below the diffraction limit, but is 3 times smaller than the aperture size. Subsurface buried defect in a plastic plate (polytetrafluoroethylene defect in polyester fiber glass, 0.5 mm below the top surface of the plate) was also imaged, with a spatial resolution of 1.5 mm, and positioning error of the defect less than 0.5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hongxiang Liu, Jianquan Yao, Yuye Wang, Degang Xu, and Yixin He, "Review of THz near-field imaging", J. Infrared Millim. W. 35(3), 300–309 (2016).

    Google Scholar 

  2. A. J. Huber, F Keilmann, J Wittborn, J Aizpurua, and R Hillenbrand, "Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices", Nano Lett. 8(11), 3766–3770 (2008).

    Article  Google Scholar 

  3. Bitzer Andreas, Ortner Alex, Merbold Hannes, Feurer Thomas, and Walther Markus, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle" , Opt. Express 19(3), 2537–2545 (2011).

  4. A. Doi, F. Blanchard, H. Hirori, and K. Tanaka, "Near-field THz imaging of free induction decay from a tyrosine crystal", Opt. Express 18(17), 18419–18424 (2010).

    Article  Google Scholar 

  5. Stefan G. Stanciu, Denis E. Tranca, Radu Hristu, and George A. Stanciu, "Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy", Biomed. Opt. Express 8(12), 5374–5383 (2017).

    Article  Google Scholar 

  6. Mounaix P , Mavarani L , Hillger P , et al. "NearSense – advances towards a silicon-based terahertz near-field imaging sensor for Ex vivo breast tumour identification", Frequenz 72(3),1–7 (2018).

    Google Scholar 

  7. Hyesog Lee, Zhaowei Liu, Yi Xiong, Cheng Sun, and Xiang Zhang, "Design, fabrication and characterization of a Far-field Superlens", Solid State Commun. 146(5), 202–207 (2008).

    Article  Google Scholar 

  8. Zhu B, Vanloocke S, Matvejev V, et al. "Scanning near-field millimeter wave microscope combining dielectric tapered probes and metal tips", Progress In Electromagnetics Research Symposium, Suzhou, China, pp.536–539, 2011.

  9. Moon K, Park H, Kim J, et al. "Subsurface nanoimaging by broadband terahertz pulse near-field microscopy", Nano Lett. 15(1), 549–552 (2015).

    Article  Google Scholar 

  10. Alonso-González, P, Nikitin A Y , Gao Y , et al. "Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy", Nat. Nanotechnol. 12(1), 31 (2017).

    Article  Google Scholar 

  11. Pernille Klarskov, Hyewon Kim, Vicki L. Colvin, and Daniel M. Mittleman, "Nanoscale laser terahertz emission microscopy", ACS Photonics 4(11), 2676–2680 (2017).

    Article  Google Scholar 

  12. Zhu B, He G, Stiens J, et al. "Resolution analysis of a polymethylmethacrylate tapered probe in near-field terahertz imaging", Appl. Comput. Electrom. 30(1), 30–41 (2015).

    Google Scholar 

  13. M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope", Appl. Phys. Lett. 68(11), 1579–1581 (1996).

    Article  Google Scholar 

  14. Hunsche S, Koch M, Brener I, et al. "THz near-field imaging", Opt. Commun. 150(1–6), 22–25 (1998).

    Article  Google Scholar 

  15. Klein N, Lahl P, Poppe U, et al. "A metal-dielectric antenna for terahertz near-field imaging", J. Appl. Phys. 98(1), 014910 (2005).

    Article  Google Scholar 

  16. Liu Jing-bo, Mendis R, Mittleman D M, et al. "A tapered parallel-plate-waveguide probe for THz near-field reflection imaging", Appl. Phys. Lett. 100(3), 031101 (2012).

    Article  Google Scholar 

  17. Mitrofanov O, Renaud C C, and Seeds A J, "Terahertz probe for spectroscopy of sub-wavelength objects", Opt. Express 20(6), 6197–6202 (2012).

    Article  Google Scholar 

  18. Ishihara K, Ikari T, Minamide H, et al. "Terahertz near field imaging using enhanced transmission through a single subwavelength aperture", Jpn. J. Appl. Phys. 44(29), L929-L931 (2005).

  19. Nathan S. Greeney, and John A. Scales, "Dielectric microscopy with submillimeter resolution", Appl. Phys. Lett. 91(22), 222909–222909-3 (2007).

    Article  Google Scholar 

  20. Milan Berta, Petr Kuzel, and Filip Kadlec, "Study of responsiveness of near-field terahertz imaging probes", J. Phys. D Appl. Phys. 42(15), 155501 (2009).

    Article  Google Scholar 

  21. Weiss M D, Zadler B, Schafer S, et al. "Near field millimeter wave microscopy with conical Teflon probes", J. Appl. Phys. 106(4), 044912 (2009).

    Article  Google Scholar 

  22. Jędrzej Szelc, and Harvey Rutt, "Near-field THz imaging and spectroscopy using a multiple subwavelength aperture modulator", IEEE T. THz. Sci. Techn. 3(2), 165–171 (2013).

    Article  Google Scholar 

  23. Zhu B, Stiens J, Poesen G, Vanloocke S, De Zutter D, and Vounckx R, "Dielectric analysis of 3D printed materials for focusing elements operating in mm and THz wave frequency bands", Proceedings of Symposium IEEE/LEOS Benelux Chapter, Delft, Netherland, pp.13–16, 2010.

  24. Zhu B, Stiens J, Matvejev V, and Vounckx R, "Inexpensive and easy fabrication of multi-mode tapered dielectric circular probes at millimeter wave frequencies", Prog. Electromagn. Res. 126, 237–254 (2012).

    Article  Google Scholar 

  25. Zhu B, Stiens J, Vounckx R, and He G, "Analysis and optimization of a focusing metaldielectric probe for near-field terahertz imaging", Proceedings of the 10th European Radar Conference, Nuremberg, Germany, pp.431–434, 2013.

  26. Olutosin Charles Fawole, and Massood Tabib-Azar, "Terahertz near-field imaging of biological samples with horn antenna-excited probes", IEEE Sens. J. 16(24), 8752–8760 (2016).

    Article  Google Scholar 

  27. Tie-Jun Huang, Heng-He Tang, Li-Zheng Yin, Jiang-Yu Liu, Yunhua Tan, and Pu-Kun Liu, "Experimental demonstration of an ultra-broadband subwavelength resolution probe from microwave to terahertz regime", Opt. Lett. 43(15), 3646–3649 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Wei Fan participated in the early stages of this work and Mr. Yanbo Zhang performed the programming for the experiment, and their contributions are gratefully acknowledged.

Funding

We gratefully acknowledge financial support of this work from the National Natural Science Foundation of China (61705120), the Ministry of Science and Technology of China (2015CB755401), and the Department of Science and Technology of Shandong Province (2017GGX10108, 2018GGX101043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Chang, T. & Cui, HL. W-band Aperture-Type Scanning Near-Field Microscopy Using Tapered Plastic Probe. J Infrared Milli Terahz Waves 40, 801–810 (2019). https://doi.org/10.1007/s10762-019-00603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00603-2

Keywords

Navigation