Skip to main content
Log in

Terahertz Dielectric Properties of Polycrystalline MgAl2O4 Spinel Obtained by Microwave Sintering and Hot Pressing

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper describes the fabrication of polycrystalline magnesium aluminate spinel (MgAl2O4) by microwave sintering and hot pressing and the investigation of its dielectric properties in the millimeter-wave and terahertz frequency range. The dielectric properties were studied in the frequency range 50–300 GHz using a spectrometer based on an open Fabry–Perot resonator with a high quality factor and in the range 0.6–3.3 THz using the time-domain spectroscopy method. The terahertz radiation was generated as a result of air breakdown using two-color laser pulses with carrier wavelengths of 800 and 400 nm. The dielectric characteristics of MgAl2O4 ceramics obtained from high-purity nanosized powders by microwave sintering and by hot pressing are compared. The refractive index of the materials varies from 2.85 to 2.95, and the dielectric loss tangent increases from 1.5 × 10−4 to 1.5 × 10−2 within the frequency range 0.05–3.3 THz. The possible use of magnesium aluminate spinel for millimeter-wave and terahertz applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.H. Siegel, IEEE Trans. Microw. Theory Tech. 52, 2438 (2004).

    Article  Google Scholar 

  2. M. Tonouchi, Nature Photonics 1, 97 (2007).

    Article  Google Scholar 

  3. J.H. Booske, Phys. Plasmas 15, 055502 (2008).

    Article  Google Scholar 

  4. R.A. Lewis, J. Phys. D: Appl. Phys. 47, 374001 (2014).

    Article  Google Scholar 

  5. S.S. Balabanov, A.V. Belyaev, A.V. Novikova, D.A. Permin, E.Ye. Rostokina, R.P. Yavetskiy, Inorg. Mater. 54, 1045 (2018).

    Article  Google Scholar 

  6. A. Krell, J. Klimke, T. Hutzler, J. Eur. Ceram. Soc 29, 275 (2009).

    Article  Google Scholar 

  7. M. Dumerac, I.E. Reimanis, C. Smith, H.-J. Kleebe, M.M. Muller, Int. J. Appl. Ceram. Technol. 10, E33 (2013).

    Article  Google Scholar 

  8. A. Goldstein, J. Eur. Ceram. Soc. 32, 2869 (2012).

    Article  Google Scholar 

  9. S.S. Balabanov, R.P. Yavetskiy, A.V. Belyaev, E.M. Gavrishchuk, V.V. Drobotenko, I.I. Evdokimov, A.V. Novikova, O.V. Palashov, D.A. Permin, V.G. Pimenov, Ceram. Int. 41, 13366 (2015).

    Article  Google Scholar 

  10. S.V. Egorov, Yu.V. Bykov, A.G. Eremeev, A.A. Sorokin, E.A. Serov, V.V.Parshin, S.S. Balabanov, A.V. Belyaev, A.V. Novikova, D.A. Permin, Radiophys. Quantum Electron. 59, 690 (2017).

    Article  Google Scholar 

  11. N.McN. Alford, J. Breeze, X. Wang, S.J. Penn, S. Dalla, S.J. Webb, N. Ljepojevic, X. Aupi, J. Eur. Ceram. Soc. 21, 2605 (2001).

    Article  Google Scholar 

  12. S.S. Balabanov, V.E. Vaganov, E.M. Gavrishchuk, V.V. Drobotenko, D.A. Permin, A.V. Fedin, Inorg. Mater. 50, 830 (2014).

    Article  Google Scholar 

  13. C.-J. Ting, H.-Y. Lu, J. Am. Ceram. Soc. 83, 1592 (2000).

    Article  Google Scholar 

  14. M.K. Alekseev, G.I. Kulikova, M.Yu. Rusin, N.N. Savanina, S.S. Balabanov, A.V. Belyaev, E.M. Gavrishchuk, A.V. Ivanov, R.N. Rizakhanov, Inorg. Mater. 52, 324 (2016).

    Article  Google Scholar 

  15. S.S. Balabanov, E.M. Gavrishchuk, A.M. Kut’in, D.A. Permin, Inorg. Mater. 47, 484 (2011).

    Article  Google Scholar 

  16. Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, A. Bogdashev, G. Kalynova, V. Semenov, N. Zharova, IEEE Trans. Plasma Sci. 32, 67 (2004).

    Article  Google Scholar 

  17. Yu.A. Dryagin, V.V. Parshin, Int. J. Infrared Millim. Waves 13, 1023 (1992).

    Article  Google Scholar 

  18. V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, E.A. Serov, IEEE Sens. J. 13, 18 (2013).

    Article  Google Scholar 

  19. V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, E.A. Serov, Radiophys. Quantum Electron. 52, 525 (2009).

    Article  Google Scholar 

  20. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).

    Article  Google Scholar 

  21. K.Z. Rajab, M. Naftaly, E.H. Linfield, J.C. Nino, D. Arenas, D. Tanner, R. Mittra, M. Lanagan, J. Micro. and Elect. Pack. 5, 101 (2008).

    Google Scholar 

  22. V.V. Kornienko, R.A. Akhmedzhanov, I.E. Ilyakov, A.D. Mishin, P.A. Prudkovskii, O.V. Samotokhin, B.V. Shishkin, G.Kh. Kitaeva, IEEE Trans. Terahertz Sci. Technol. 5, 665 (2015).

    Article  Google Scholar 

  23. M. Naftaly, P.J. Greenslade, R.E. Miles, D. Evans, Opt. Mater. 31, 1575 (2009).

    Article  Google Scholar 

  24. D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis, G. Turri, M.A. Bass, N. Haynes, Opt. Eng. 52, 087113 (2013).

    Article  Google Scholar 

  25. H.D. Xie, C. Chen, B.B. Su, H. Xi, Mater. Lett. 166, 167 (2016).

    Article  Google Scholar 

  26. W.-C. Tsai, Y.-H. Liou, Y.-C. Liou, J. Materials Sci. Engin. B 177, 1133 (2012).

    Article  Google Scholar 

  27. K.P. Surandran, P.V. Bijuman, P. Mohanan, M.T. Sebastian, Appl. Phys. A 81, 823 (2005).

    Article  Google Scholar 

  28. C.L. Huang, J.J. Wang, F.S. Yen, C.-Y. Huang, Mater. Res. Bull. 43, 1463 (2008).

    Article  Google Scholar 

  29. I. Kagomiya, Y. Matsuda, K. Kakimoto, H. Ohsato, Ferroelectrics 387, 1 (2009).

    Article  Google Scholar 

Download references

Funding

The study of the microwave sintering of MgAl2O4 ceramics was supported by Russian Foundation for Basic Research, grant No. 16-08-00736. The study of the sub-terahertz and terahertz dielectric properties was supported by the Russian Foundation for Basic Research and the Government of the Nizhny Novgorod region, grant No. 18-42-520015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Rybakov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, S.V., Sorokin, A.A., Ilyakov, I.E. et al. Terahertz Dielectric Properties of Polycrystalline MgAl2O4 Spinel Obtained by Microwave Sintering and Hot Pressing. J Infrared Milli Terahz Waves 40, 447–455 (2019). https://doi.org/10.1007/s10762-019-00582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00582-4

Keywords

Navigation