Skip to main content
Log in

Terahertz Differential Computed Tomography: a Relevant Nondestructive Inspection Application

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

In recent years, tremendous advances have been made in the choice of materials used in the industry. With weight reduction as the goal, composite and polymer materials are more and more popular but they are almost transparent to X-ray. Because of this, interest has grown in other wavelengths like terahertz (THz). Due to a difference in how X-ray and THz propagate, X-ray CT algorithms cannot be directly used. For example, THz induces refraction making the reconstruction problem nonlinear. In this paper, we present a new algorithm which complies with beam profile intensities, refraction, and reflection. It is based on linearizing the reconstruction process around a computer-aided design (CAD) model of the object to be reconstructed. The method we propose computes the deviation between the object and this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Reiser, M.F., Semmler, W., Hricak, H.: Magnetic Resonance Tomography. Springer Science & Business Media (2007).

  2. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics (2001).

  3. Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N.: Positron Emission Tomography: Basic Sciences. Springer Science & Business Media (2006).

  4. Chiesura, G., Luyckx, G., Voet, E., Lammens, N., van Paepegem, W., Degrieck, J., Dierick, M., van Hoorebeke, L., Vanderniepen, P., Sulejmani, S., Sonnenfeld, C., Geernaert, T., Berghmans, F.: A micro-computed tomography technique to study the quality of fibre optics embedded in composite materials. Sensors 15(5), 10852–10871 (2015).

  5. Stock, S.: X-ray microtomography of materials. International Materials Reviews 44(4), 141–64 (2015).

  6. Mittleman, D., Hunsche, S., Boivin, L., Nuss, M.C.: T-ray tomography. Optics Letters 22(12), 904–906 (1997).

  7. Mukherjee, S., Federici, J., Lopes, P., Cabral, M.: Elimination of fresnel reflection boundary effects and beam steering in pulsed terahertz computed tomography. Journal of Infrared, Millimeter, and Terahertz Waves 34(9), 539–555 (2013).

  8. Strauss, O., Lahrech, A., Rico, A., Mariano-Goulart, D., Telle, B.: Nibart: A new interval based algebraic reconstruction technique for error quantication of emission tomography images. In: MICCAI: Medical Image Computing and Computer-Assisted Intervention. London, United Kingdom (2009).

  9. Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances. SPIE Press (2003).

  10. Natterer, F.: The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics (2001).

  11. Guillet, J.P., Recur, B., Frederique, L., Bousquet, B., Canioni, L., Manek-Hönninger, I., Desbarats, P., Mounaix, P.: Review of terahertz tomography techniques. Journal of Infrared, Millimeter, and Terahertz Waves 35(4), 382–411 (2014).

  12. Kaczmarz, S.: Approximate solution of systems of linear equations. International Journal of Control 57(6), 1269–1271 (1993).

  13. Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. Journal of Theoretical Biology 29(3), 471–476 (1970).

  14. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1(2), 113 – 122 (1982).

  15. Slambrouck, K.V., Stute, S., Comtat, C., Sibomana, M., Velden, F.H.P.V., Boellaard, R., Nuyts, J.: Bias reduction for low-statistics pet: Maximum likelihood reconstruction with a modified poisson distribution. IEEE Transactions on Medical Imaging 34(1), 126 – 136 (1982).

  16. Yokoi, T., Shinohara, H., Hashimoto, T., Yamamoto, T., Niio, Y.: Implementation and performance evaluation of iterative reconstruction algorithms in spect. In: Second International Workshop on EGS. Tsukuba, Japan (2000).

  17. Recur, B., Guillet, J., Manek-Hönninger, I., Delagnes, J., Benharbone, W., Desbarats, P., Domenger, J.P., Canioni, L., Mounaix, P.: Propagation beam consideration for 3d thz computed tomography. Optics Express 20(6), 5817–5829 (2012).

  18. Ferguson, B., Wang, S., Gray, D., Abbot, D., Zhang, X.C.: T-ray computed tomography. Optics Letters 27(15), 1312–1314 (2002).

  19. Tepe, J., Schuster, T., Littau, B.: A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography. Journal Inverse Problems in Science and Engineering 25(10), 1448–1473 (2016).

  20. Schuster, F., Coquillat, D., Videlier, H., Sakowicz, M., Teppe, F., Dussopt, L., Giffard, B., Skotnicki, T., Knap, W.: Broadband terahertz imaging with highly sensitive silicon cmos detectors. Optics express 19(8), 7827–7832 (2011).

  21. Andersen, A., Kak, A.C.: Simultaneous algebraic reconstruction technique(sart) : A superior implementation of the art algorithm. Ultrasonic imaging 6(1), 81–94 (1984).

  22. Elfving, T., Hansen, P.C., Nikazad, T.: Semiconvergence and relaxation parameters for projected sirt algorithms. SIAM Journal on Scientific Computing 34(4), A2000–A2017 (2012).

  23. Flemming, H.: Equivalence of regularization and truncated iteration in the solution of ill-posed image reconstruction problems. Linear Algebra and its Applications 130, 133–150 (1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Duhant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duhant, A., Triki, M. & Strauss, O. Terahertz Differential Computed Tomography: a Relevant Nondestructive Inspection Application. J Infrared Milli Terahz Waves 40, 178–199 (2019). https://doi.org/10.1007/s10762-018-0564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0564-5

Keywords

Navigation