Skip to main content
Log in

Generation of Electromagnetic Rogue-Waves in Submillimeter-Band Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Rogue-waves in gyrotrons represent sporadically emitted ultrashort electromagnetic pulses with intensities significantly greater than the average radiation power and, in optimal conditions, higher than the power of the driving electron beams. In this paper within the framework of the average approach and direct 3D PIC (particle-in-cell) simulations, we study the possibility of rogue wave generation in submillimeter-band gyrotrons operating at high-order modes. It is demonstrated that in a 500 GHz fundamental cyclotron harmonic gyrotron excited by the 30 kV/50 A helical electron beam the peak power of generated picosecond electromagnetic spikes at TE61 mode can reach 5 MW that more than three times exceeds the power of the driving beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Extreme Ocean Waves, Ed. by E. Pelinovsky, C. Kharif. – Springer Science+Business Media B.V., 2008.

  2. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F.T. Arecchi, Phys. Rep. 528, 47 (2013).

    Article  MathSciNet  Google Scholar 

  3. N. Akhmediev, B. Kibler, F. Baronio, et al, J. Opt. 8, 063001 (2016).

    Article  Google Scholar 

  4. S. Residori, M. Onorato, U. Bortolozzo, F.T. Arecchi, Contemp. Phys. 17, 53 (2017).

    Article  Google Scholar 

  5. N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, V. P. Tarakanov, Phys. Rev. Lett. 119, 034801 (2017).

    Article  Google Scholar 

  6. M.I. Petelin, THz Sci. Tech. 8, 157 (2015).

    Google Scholar 

  7. M. Thumm, KIT Sci. Rep. 7750 (2018).

  8. N.S. Ginzburg , G.S. Nusinovich, and N.A. Zavolsky, Int. J. Electron. 61, 881 (1986).

    Article  Google Scholar 

  9. M.A. Moiseev, L.L. Nemirovskaya, V.E. Zapevalov, N.A. Zavolsky, Int. J. Infrared Milli. Waves 18, 2117 (1997).

    Article  Google Scholar 

  10. M. I. Airila, O. Dumbrajs, A. Reinfelds, U. Strautins, Phys. Plasmas 8, 4608 (2001).

    Article  Google Scholar 

  11. N.S. Ginzburg, A.S. Sergeev, and I.V. Zotova, Phys. Plasmas 22, 033101 (2015).

    Article  Google Scholar 

  12. O. Dumbrajs, H. Kalis, Phys. Plasmas, 22, 053113 (2015).

    Article  Google Scholar 

  13. R.M. Rozental, N.S. Ginzburg, A.S. Sergeev, I.V. Zotova, A.E. Fedotov and V.P. Tarakanov, Tech. Phys. 62, 1562 (2017).

    Article  Google Scholar 

  14. R.M. Rozental, N.S. Ginzburg, I.V. Zotova, A.S. Sergeev, V.P. Tarakanov, Tech. Phys. Lett. 43, 831 (2017).

    Article  Google Scholar 

  15. S. D. Korovin, A. A. Eltchaninov, V. V. Rostov, V. G. Shpak, M. I. Yalandin, N. S. Ginzburg, A. S. Sergeev, and I. V. Zotova, Phys. Rev. E 74, 016501 (2006).

    Article  Google Scholar 

  16. Sh. E. Tsimring, Int. J. Infrared Millim. Waves. 14, 817 (1993).

    Article  Google Scholar 

  17. A. L. Goldenberg, M. Yu. Glyavin, N. A. Zavolsky, V. N. Manuilov, Radiophys. Quant. Electron. 48, 741 (2005).

    Article  Google Scholar 

  18. M. Yu. Glyavin, A. L. Goldenberg, V. N. Manuilov, M. V. Morozkin, Radiophys. Quant. Electron. 54, 622 (2012).

    Article  Google Scholar 

  19. V. P. Tarakanov, EPJ Web of Conferences 149, 04024 (2017).

    Article  Google Scholar 

  20. T. Idehara, I. Ogawa, H. Mori, S. Kobayashi, S. Mitsudo, T. Saito, J. Plasma Fusion Res. Series 8, 1508 (2009).

    Google Scholar 

  21. M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).

    Article  Google Scholar 

  22. M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R.Pu, Appl. Phys. Lett. 101, 153503 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. V.N. Manuilov for helpful discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (RFBR) (project No. 17-08-01077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Rozental.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozental, R.M., Zotova, I.V., Ginzburg, N.S. et al. Generation of Electromagnetic Rogue-Waves in Submillimeter-Band Gyrotrons. J Infrared Milli Terahz Waves 40, 150–157 (2019). https://doi.org/10.1007/s10762-018-0561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0561-8

Keywords

Navigation