Skip to main content
Log in

A Rapid Fabrication of Novel Dual Band Terahertz Metamaterial by Femtosecond Laser Ablation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we present a novel dual-band, polarization insensitive terahertz metamaterial design, numerical simulation, and its fabrication using femtosecond laser ablation process. The proposed design uses periodic patterned copper metallic structure on the polyimide thin film and provides dual resonant characteristics at 0.25 THz and 0.42 THz, respectively. The structure was simulated numerically using CST Microwave studio software and obtained the bandstop characteristics of – 22 dB at both the resonances. The obtained 10-dB bandwidth in numerical simulation at the first and second resonance was 11.7 GHz and 14 GHz, respectively. The normalized transmission, electric field, and the surface current distributions were analyzed for understanding the mechanism of dual-band resonance. In addition, the effect of geometrical parameters on the resonances has been discussed. The simulated structure was fabricated using 800 nm wavelength 100 fs Ti: Sapphire laser and the laser parameters were optimized for the ablation process. The characterization of the fabricated structure has been done using terahertz time-domain spectroscopy (THz-TDS) technique. The measurement results show that the fabricated structure has obtained polarization insensitive and angular stable transmission response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. RoyChoudhury, V. Rawat, A.H. Jalal, S.N. Kale, S. Bhansali, Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents, Biosens. Bioelectron. 86 (2016) 595–608. https://doi.org/10.1016/j.bios.2016.07.020.

    Article  Google Scholar 

  2. W. Withayachumnankul, D. Abbott, Metamaterials in the terahertz regime, IEEE Photonics J. 1 (2009) 99–118. https://doi.org/10.1109/JPHOT.2009.2026288.

    Article  Google Scholar 

  3. L. Li, J. Wang, J. Wang, H. Ma, H. Du, J. Zhang, S. Qu, Z. Xu, Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics, Sci. Rep. 6 (2016) 1–8. https://doi.org/10.1038/srep24178.

    Article  Google Scholar 

  4. B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, L.L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application, J. Appl. Phys. 117 (2015). https://doi.org/10.1063/1.4905261.

  5. B.X. Wang, G.Z. Wang, Quad-Band Terahertz Absorber Based on a Simple Design of Metamaterial Resonator, IEEE Photonics J. 8 (2016). https://doi.org/10.1109/JPHOT.2016.2633560.

  6. B.X. Wang, Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs, IEEE J. Sel. Top. Quantum Electron. 23 (2017). https://doi.org/10.1109/JSTQE.2016.2547325.

  7. G.Z. Wang, B.X. Wang, Five-Band Terahertz Metamaterial Absorber Based on a Four-Gap Comb Resonator, J. Light. Technol. 33 (2015) 5151–5156. https://doi.org/10.1109/JLT.2015.2497740.

    Article  Google Scholar 

  8. W. Pan, X. Yu, J. Zhang, W. Zeng, A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings, IEEE J. Quantum Electron. 53 (2017). https://doi.org/10.1109/JQE.2016.2643279.

  9. X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, L. Wang, Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor, Biosens. Bioelectron. 42 (2013) 626–631. https://doi.org/10.1016/j.bios.2012.10.095.

    Article  Google Scholar 

  10. S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.L. Cui, C. Du, Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial, IEEE Photonics Technol. Lett. 28 (2016) 986–989. https://doi.org/10.1109/LPT.2016.2522473.

    Article  Google Scholar 

  11. Z. Geng, X. Zhang, Z. Fan, X. Lv, H. Chen, A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage, Sci. Rep. 7 (2017) 1–11. https://doi.org/10.1038/s41598-017-16762-y.

    Article  Google Scholar 

  12. C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing, Appl. Phys. Lett. 91 (2007) 2005–2008. https://doi.org/10.1063/1.2805016.

    Article  Google Scholar 

  13. C. Debus, P. Haring Bolívar, Terahertz biosensors based on double split ring arrays, 6987 (2008) 69870U. https://doi.org/10.1117/12.786069.

  14. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, J. Kruger, Laser-Induced Periodic Surface Structures-A Scientific Evergreen, IEEE J. Sel. Top. Quantum Electron. 23 (2017). https://doi.org/10.1109/JSTQE.2016.2614183.

  15. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A Mater. Sci. Process. 63 (1996) 109–115. https://doi.org/10.1007/s003390050359.

    Article  Google Scholar 

  16. S. Mishra, V. Yadava, Laser Beam MicroMachining (LBMM) - A review, Opt. Lasers Eng. 73 (2015) 89–122. https://doi.org/10.1016/j.optlaseng.2015.03.017.

    Article  Google Scholar 

  17. P. Taylor, N. Ahmed, Laser Ablation Process Competency to Fabricate Microchannels in Titanium Alloy Laser Ablation Process Competency to Fabricate Microchannels in Titanium Alloy, (2015). https://doi.org/10.1080/10426914.2015.1019132.

  18. R. Jordan, D. Cole, G. Lunney, K. Mackay, D. Givord, Pulsed laser ablation of copper, 86 (1995) 24–28. https://doi.org/10.1016/0169-4332(94)00370-X.

    Article  Google Scholar 

  19. M. Esakkimuthu, S.B. Suseela, R. Sankararajan, A. Gupta, G. Rana, S. Prabhu, Laser patterning of thin film copper and ITO on flexible substrates for terahertz antenna applications, J. Laser Micro Nanoeng. 12 (2017) 313–320. https://doi.org/10.2961/jlmn.2017.03.0023.

    Article  Google Scholar 

  20. C. Mcdonnell, D. Milne, H. Chan, D. Rostohar, G.M.O. Connor, Part 1: Wavelength dependent nanosecond laser patterning of very thin indium tin oxide fi lms on glass substrates, Opt. Lasers Eng. 80 (2016) 73–82. https://doi.org/10.1016/j.optlaseng.2015.12.005.

    Article  Google Scholar 

  21. N. Born, R. Gente, M. Koch, Laser beam machined free-standing terahertz metamaterials, Electron. Lett. 51 (2015) 3–4. https://doi.org/10.1049/el.2015.0655.

    Article  Google Scholar 

  22. E. Manikandan, B.S. Sreeja, S. Radha, R.N. Bathe, Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance, Mater. Lett. 229 (2018) 320–323. https://doi.org/10.1016/j.matlet.2018.07.044.

    Article  Google Scholar 

  23. Y. Hirayama, M. Obara, Heat-affected zone and ablation rate of copper ablated with femtosecond laser, J. Appl. Phys. 97 (2005). https://doi.org/10.1063/1.1852692.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Manikandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, E., Sreeja, B.S., Radha, S. et al. A Rapid Fabrication of Novel Dual Band Terahertz Metamaterial by Femtosecond Laser Ablation. J Infrared Milli Terahz Waves 40, 38–47 (2019). https://doi.org/10.1007/s10762-018-0543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0543-x

Keywords

Navigation