Skip to main content
Log in

Experimental and Theoretical Study on Terahertz Absorption Characteristics and Spectral De-noising of Three Plant Growth Regulators

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Accurate identification of terahertz (THz) absorption peaks of biological macromolecules is of great significance in practical applications. In this work, the experimental and theoretical fundamentals of detecting three plant growth regulators (PGRs), including 6-Benzylaminopurine (6-BA), paclobutrazol (PBZ), and maleic hydrazide (MH) were investigated by using THz time-domain spectroscopy (THz-TDS). THz absorption coefficient and refractive index in frequencies of 0.06–4 THz were obtained. The wavelet threshold de-noising (WTD) method was used to remove spectral noise and improve the signal-to-noise ratio (SNR). The density functional theory (DFT) was applied to the molecular characterization and theoretical calculation of PGRs. Experimental results showed that the three PGRs had unique characteristic absorption peaks. Based on the sym4 wavelet function and four-layer wavelet decomposition, the de-noising performance of hard threshold WTD was better than that of soft threshold WTD. The spectra processed by hard threshold de-noising achieved higher peak SNR (6-BA: 40.22, PBZ: 37.73, MH: 34.83) and lower root mean square error (6-BA: 0.41, PBZ:0.40, MH:0.54). In addition, the characteristic absorption and anomalous dispersion of 6-BA were found at 2.08 and 3.00 THz, those of PBZ were shown at 0.71, 1.30, 1.88, and 2.67 THz, and those of MH were shown at 2.34 THz. The absorption peaks in THz spectra processed by hard threshold WTD were demonstrated to be in good agreement with the simulation results of DFT. These results show the effectiveness of WTD in THz spectral de-noising and the feasibility of using THz-TDS to detect PGRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Víctor M. Jiménez, Plant Growth Regulation 47 (2–3), 91 (2005).

    Article  Google Scholar 

  2. A Moons, Vitamins & Hormones 72 (72), 155 (2005).

    Article  Google Scholar 

  3. Ana Coste, Laurian Vlase, Adela Halmagyi, Constantin Deliu, and Gheorghe Coldea, Plant Cell, Tissue & Organ Culture 106 (2), 279 (2011).

    Article  Google Scholar 

  4. Weiqiang Li, Xiaojing Liu, M. Ajmal Khan, and Shinjiro Yamaguchi, Journal of Plant Research 118 (3), 207 (2005).

    Article  Google Scholar 

  5. Dennis Francis and David A. Sorrell, Plant Growth Regulation 33 (1), 1 (2001).

    Google Scholar 

  6. Guanfeng Cui, S. U. Rina, Ge Song, Xinxin Ren, and Xiaoping Hou, Forensic Science & Technology (2017).

  7. Chu Zhang, Hao Jiang, Fei Liu, and Yong He, Food & Bioprocess Technology 10 (1), 1 (2016).

    Google Scholar 

  8. W. Kong, C. Zhang, W. Huang, F. Liu, and Y. He, Sensors 18 (1), 123 (2018).

    Article  Google Scholar 

  9. Si Jie Liu, Chi Guang Fang, Yong Cui, and Nan Jiang, Journal of Food Safety & Quality (2016).

  10. Fangfang Qu, Lei Lin, Chengyong Cai, Tao Dong, Yong He, and Pengcheng Nie, Appl. Sci. 8(3), 420 (2018).

    Article  Google Scholar 

  11. P. H. Siegel, IEEE Transactions on Microwave Theory & Techniques 50 (3), 910 (2002).

    Article  Google Scholar 

  12. L. Duvillaret, F. Garet, and J. L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2 (3), 739 (2002).

    Article  Google Scholar 

  13. Mira Naftaly and Robert E. Miles, Proc. IEEE 95 (8), 1658 (2007).

    Article  Google Scholar 

  14. P. Nie, F. Qu, L. Lin, T. Dong, Y. He, Y. Shao, and Y. Zhang, Sensors 17 (12), 2830 (2017).

    Article  Google Scholar 

  15. B Fischer, M Hoffmann, H Helm, G Modjesch, and P. Uhd Jepsen, Semiconductor Science & Technology 20 (7), S246 (2005).

    Article  Google Scholar 

  16. Ling Jiang, Miao Li, Chun Li, Haijun Sun, Li Xu, Biaobin Jin, and Yunfei Liu, Journal of Infrared Millimeter & Terahertz Waves 35 (10), 871 (2014).

    Article  Google Scholar 

  17. Hwayeong Cheon, Heejin Yang, Sang Hun Lee, Young A Kim, and Joo Hiuk Son, Scientific reports 6, 37103 (2016).

    Article  Google Scholar 

  18. Nico Vieweg, Mehmet Ali Celik, Sabine Zakel, Vineet Gupta, Gernot Frenking, and Martin Koch, Journal of Infrared Millimeter & Terahertz Waves 35 (5), 478 (2014).

    Article  Google Scholar 

  19. Seung Hyun Baek, Hee Kang Ju, Yeun Hee Hwang, Min Ok Kang, Kyungwon Kwak, and Hyang Sook Chun, Journal of Infrared Millimeter & Terahertz Waves 37 (5), 486 (2016).

    Article  Google Scholar 

  20. K Dolezal, IKrystof V Popa, L Spichal, M Fojtikova, J Holub, R Lenobel, T Schmulling, and M Strnad, Bioorganic & Medicinal Chemistry 14 (3), 875 (2006).

    Article  Google Scholar 

  21. C. Abdul Jaleel, P. Manivannan, B. Sankar, A. Kishorekumar, S. Sankari, and R. Panneerselvam, Process Biochem. 42 (11), 1566 (2007).

    Article  Google Scholar 

  22. J Rank, L. C. Lopez, M. H. Nielsen, and J Moretton, Hereditas 136 (1), 13 (2002).

    Article  Google Scholar 

  23. Junliang Dong, Alexandre Locquet, and D. S. Citrin, Journal of Infrared Millimeter & Terahertz Waves 37 (3), 289 (2016).

    Article  Google Scholar 

  24. Zhen Bao Ling, Pei Yuan Wang, Yun Xia Wan, Yan Zhang Wang, De Fu Cheng, and L. I. Tong-Lin, Chinese Journal of Geophysics 59 (9), 3436(2016).

    Google Scholar 

  25. Dazhong Li, Jie Zhao, Jianping Liu, Wenhe Cai, and Yanhui Ma, North China Electric Power (2016).

  26. O El B'charri, R Latif, K Elmansouri, A Abenaou, and W Jenkal, Biomedical Engineering Online 16 (1), 26 (2017).

    Article  Google Scholar 

  27. Philippe Blanchard and Erwin Brüning, (2015).

  28. H Chermette, J. Comput. Chem. 20 (1), 129 (2015).

    Article  Google Scholar 

  29. Robert G. Parr and Weitao Yang, Annu. Rev. Phys. Chem. 46 (1), 701 (1995).

    Article  Google Scholar 

  30. Y. Cao, T Hughes, D Giesen, M. D. Halls, A Goldberg, T. R. Vadicherla, M Sastry, B Patel, W Sherman, and A. L. Weisman, J. Comput. Chem. 37 (16), 1425 (2016).

    Article  Google Scholar 

  31. Andrei Ipatov, Felipe Cordova, Loïc Joubert Doriol, and Mark E. Casida, Journal of Molecular Structure Theochem 914 (1), 60 (2017).

    Google Scholar 

  32. Steven Pellizzeri, Sean P. Delaney, Timothy M. Korter, and Jon Zubieta, J. Mol. Struct. 1050 (42), 27 (2013).

    Article  Google Scholar 

  33. M. T. Ruggiero, J Sibik, J. A. Zeitler, and T. M. Korter, J. Phys. Chem. A 120 (38), 7490 (2016).

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the Shenzhen Institute of Terahertz Technology and Innovation for the technical support. The authors also acknowledge the financial support of the National Key Point Research and Invention Program of the Thirteenth (2016YFD0700304) and National Key Research and Development Plan (2017YFD0700501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Nie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, F., Pan, Y., Lin, L. et al. Experimental and Theoretical Study on Terahertz Absorption Characteristics and Spectral De-noising of Three Plant Growth Regulators. J Infrared Milli Terahz Waves 39, 1015–1027 (2018). https://doi.org/10.1007/s10762-018-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0507-1

Keywords

Navigation