Advertisement

Feasibility and Characterization of Common and Exotic Filaments for Use in 3D Printed Terahertz Devices

  • A. D. Squires
  • R. A. Lewis
Article
  • 176 Downloads

Abstract

Recent years have seen an influx of applications utilizing 3D printed devices in the terahertz regime. The simplest, and perhaps most versatile, modality allowing this is Fused Deposition Modelling. In this work, a holistic analysis of the terahertz optical, mechanical and printing properties of 17 common and exotic 3D printer filaments used in Fused Deposition Modelling is performed. High impact polystyrene is found to be the best filament, with a useable frequency range of 0.1–1.3 THz, while remaining easily printed. Nylon, polylactic acid and polyvinyl alcohol give the least desirable terahertz response, satisfactory only below 0.5 THz. Interestingly, most modified filaments aimed at increasing mechanical properties and ease of printing do so without compromising the useable terahertz optical window.

Keywords

Terahertz THz 3D printing Additive fabrication FDM 

References

  1. 1.
    I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing, Springer, Berlin, 2015.Google Scholar
  2. 2.
    B. Bhushan and M. Caspers, An overview of additive manufacturing (3D printing) for microfabrication, Microsystem Technologies 23 (2017), no. 4, 1117–1124.Google Scholar
  3. 3.
    R.A. Lewis, Terahertz physics, Cambridge University Press, Cambridge, 2012.Google Scholar
  4. 4.
    C. Jördens, K.L. Chee, I.A.I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters, Journal of Infrared Millimeter, and Terahertz Waves 31 (2010), 214.Google Scholar
  5. 5.
    C. Goy, M. Scheller, B. Scherger, V. P. Wallace, and M. Koch, Terahertz waveguide prism, Optics Express 21 (2013), no. 16, 19292–19301.Google Scholar
  6. 6.
    L. Lo and R. Leonhardt, Aspheric lenses for terahertz imaging, Optics Express 16 (2008), no. 20, 15991–15998.Google Scholar
  7. 7.
    J. L. Coutaz, F. Garet, E. Bonnet, A. V. Tishchenko, O. Parriaux, and M. Nazarov, Grating diffraction effects in the THz domain, Acta Physica Polonica 107 (2005), no. 1, 26–37.Google Scholar
  8. 8.
    N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, Integrated diffractive terahertz elements, Applied Physics Letters 82 (2003), no. 5, 674.Google Scholar
  9. 9.
    B. Zhang, Y. X. Guo, H. Zirath, and Y. P. Zhang, Investigation on 3-D-printing technologies for millimeter-wave and terahertz applications, Proceedings of the IEEE 105 (2017), no. 4, 723–736.Google Scholar
  10. 10.
    A. D. Squires, E. Constable, and R.A. Lewis, 3D printed terahertz diffraction gratings and lenses. Journal of Infrared, Millimeter, and Terahertz Waves 36 (2015), no. 1, 72–80.Google Scholar
  11. 11.
    W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, and E. Czerwinska, 3D printed diffractive terahertz lenses, M. Szustakowski. Optics Letters 41 (2016), no. 8, 1748–1751.Google Scholar
  12. 12.
    Z. Zhang, X. Wei, C. Liu, K. Wang, J. Liu, and Z. Yang, Rapid fabrication of terahertz lens via three-dimensional printing technology, Chinese Optics Letters 13 (2015), no. 2, 022201–022201.Google Scholar
  13. 13.
    S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch. 3D Printed with, THz Optics TOPAS technology. Journal of Infrared, Millimeter and Terahertz Waves 37 (2016), no. 4, 303–307.Google Scholar
  14. 14.
    J. Suszek, A. Siemion, M. S. Bieda, N. Błocki, D. Coquillat, G. Cywiński, E. Czerwińska, M. Doch, A. Kowalczyk, N. Palka, A. Sobczyk, P. Zagrajek, M. Zaremba, A. Kolodziejczyk, W. Knap, and M. Sypek, 3-D-printed flat optics for THz linear scanners, IEEE Transactions on Terahertz Science and Technology 5 (2015), no. 2, 314–316.Google Scholar
  15. 15.
    M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz, Optics Express 24 (2016), no. 25, 28968–28976.Google Scholar
  16. 16.
    M. Liang, W.-R. Ng, K. Chang, K. Gbele, M. E. Gehm, and H. Xin, A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping, IEEE Transactions on Antennas and Propagation 62 (2014), no. 4, 1799–1807.Google Scholar
  17. 17.
    S. Pandey, B. Gupta, and A. Nahata, Terahertz plasmonic waveguides created via 3D printing, Optics Express 21 (2013), no. 21, 24422–24430.Google Scholar
  18. 18.
    Z. Wu, W.-R. Ng, M. E. Gehm, and H. Xin, Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping, Optics Express 19 (2011), no. 5, 3962–3972.Google Scholar
  19. 19.
    T. Ma, H. Guerboukha, M. Girard, A. D. Squires, and R. A. Lewis, 3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors, M. Skorobogatiy., Advanced Optical Materials 4 (2016), no. 12, 2085–2094.Google Scholar
  20. 20.
    W. J. Otter and S. Lucyszyn, Hybrid 3-D-printing technology for tunable THz applications, Proceedings of the IEEE 105 (2017), no. 4, 756–767.Google Scholar
  21. 21.
    D. W. Vogt and R. Leonhardt, 3D-printed broadband dielectric tube terahertz waveguide with anti-reflection structure, Journal of Infrared, Millimeter, and Terahertz Waves 37 (2016), no. 11, 1086–1095.Google Scholar
  22. 22.
    N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, Frequency-division multiplexing in the terahertz range using a leaky-wave antenna, Nature Photonics 9 (2015), 717–720.Google Scholar
  23. 23.
    N. Yudasari, J. Anthony, and R. Leonhardt, Terahertz pulse propagation in 3D-printed waveguide with metal wires component, Optics Express 22 (2014), no. 21, 26042–26054.Google Scholar
  24. 24.
    A. R. Phipps, A. J. MacLachlan, C. W. Robertson, L. Zhang, I.V. Konoplev, A.W. Cross, and A. D. R. Phelps, Electron beam excitation of coherent sub-terahertz radiation in periodic structures manufactured by 3D printing, Nuclear Instruments and Methods in Physics Research B 402 (2017), 202–205.Google Scholar
  25. 25.
    E. A. Gurvitz, S. A. Andronaki, S. I. Gusev, V. Y. Soboleva, Y. D. Nazarov, and M. K. Khodzitsky, Development of 3D anisotropic artificial dielectric metamaterial for THz frequency range. PIERS Proceedings, 2715–2718, 2014.Google Scholar
  26. 26.
    B. Zhang and H. Zirath. Metallic, 3-D printed rectangular waveguides for millimeter-wave applications, IEEE Transactions on Components, Packaging and Manufacturing Technology 6 (2016), no. 5, 796–804.Google Scholar
  27. 27.
    A. I. Hernandez-Serrano and E. Castro-Camus, Quasi-Wollaston-prism for terahertz frequencies fabricated by 3D printing, Journal of Infrared Millimeter, and Terahertz Waves 38 (2017), no. 5, 567–573.Google Scholar
  28. 28.
    H. Yi, S.-W. Qu, K.-B. Ng, and X. Bai, 3D Printed Millimeter-Wave and Terahertz Lenses with Fixed and Frequency Scanned Beam, IEEE Transactions on Antennas and Propagation 64 (2016), no. 2, 442–449.Google Scholar
  29. 29.
    J. Li, K. Nallappan, and H. Guerboukha, M Skorobogatiy. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications, Optics Express 25 (2017), no. 4, 4126–4144.Google Scholar
  30. 30.
    F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens, Advanced Optical Materials 4 (2016), no. 7, 1034–1040.Google Scholar
  31. 31.
    N. Yudusari, D. Vogt, J. Anthony, and R. Leonhardt, Hollow core terahertz waveguide fabricated using a 3D printer. 39th International Conference on Infrared, Millimeter and Terahertz waves (IRMMW-THz), 2014.Google Scholar
  32. 32.
    D. Vogt, J. Anthony, and R. Leonhardt, Metallic and 3D-printed dielectric helical terahertz waveguides, Optics Express 23 (2015), no. 26, 33359–33369.Google Scholar
  33. 33.
    D. Headland, W. Withayachumnankul, M. Webb, H. Ebendorff-Heidepriem, A. Luiten, and D. Abbott, Analysis of 3D-printed metal for rapid-prototyped reflective terahertz optics, Optics Express 24 (2016), no. 15, 17384–17396.Google Scholar
  34. 34.
    E. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, and R. Auras, Poly(lactic acid)–mass production, processing, industrial applications, and end of life, Advanced Drug Delivery Reviews 107 (2016), 333–366.Google Scholar
  35. 35.
    K. M. Nampoothiri, N. R. Nair, and R. P. John, An overview of the recent developments in polylactide (PLA) research, Bioresource Technology 101 (2010), no. 22, 8493–8501.Google Scholar
  36. 36.
    R. M. Rasala, A. V. Janorkarc, and D. E. Hirt, Poly(lactic acid) modifications, Progress in Polymer Science 35 (2010), no. 3, 338–356.Google Scholar
  37. 37.
    F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch, Processing of poly(lactic acid) Characterization of chemical structure, thermal stability and mechanical properties, Polymer Degradation and Stability 95 (2010), no. 2, 116–125.Google Scholar
  38. 38.
    L.-T. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid), Progress in Polymer Science 33 (2008), no. 8, 820–852.Google Scholar
  39. 39.
    I. Noda, M. M. Satkowski, A. E. Dowrey, and C. Marcott, Polymer alloys of nodax copolymers and poly(lactic acid), Macromolecular Bioscience 4 (2004), no. 3, 269–275.Google Scholar
  40. 40.
  41. 41.
    M. Seidl, J. Safka, J. Bobek, L. Behalek, and J. Habr, Mechanical properties of products made of ABS with respect to individuality of FDM production process, Modern Machinery Science Journal 2 (2017), 1748–1751.Google Scholar
  42. 42.
    C. G. Ferro, S. Brischetto, R. Torre, and P. Maggiore, Characterization of ABS specimens produced via the 3D printing technology for drone structural components, Curved and Layered Structures 3 (2016), no. 1, 172–188.Google Scholar
  43. 43.
    C.-C. Kuo, L.-C. Liu, W.-F. Teng, H.-Y. Chang, F.-M. Chien, S.-J. Liao, W.-F. Kuo, and C.-M. Chen, Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications, Composites Part B: Engineering 86 (2016), 36– 39.Google Scholar
  44. 44.
    A. R. Torrado, C. M. Shemelya, J. D. English, Y. Lin, R. B. Wicker, and D. A. Roberson, Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing, Additive Manufacturing 6 (2015), 16–29.Google Scholar
  45. 45.
    W.-Y. Wang, G.-H. Luo, F. Wei, and J. Luo, Electrical conductivity and thermal properties of acrylonitrile-butadiene-styrene filled with multiwall carbon nanotubes, Polymer Engineering and Science 49 (2009), no. 11, 2144–2149.Google Scholar
  46. 46.
  47. 47.
    C.-C. Pai, R.-J. Jeng, S.J. Grossman, and J.-C. Huang, Effects of moisture on thermal and mechanical properties of nylon-6,6, Advances in Polymer Technology 9 (1989), no. 2, 157–163.Google Scholar
  48. 48.
    M. S. Mat-Shayuti, M. Z. Abdullah, and P. S. M. Megat-Yusoff, Thermal properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends, MATEC Web of Conferences 69 (2016), 03001.Google Scholar
  49. 49.
    R. Krache and I. Debbah, Some mechanical and thermal properties of PC/ABS blends, Materials Sciences and Applications 2 (2011), no. 5, 404–410.Google Scholar
  50. 50.
    S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. Journal of Infrared, Millimeter, and Terahertz Waves 35 (2104), no. 12, 993–997.Google Scholar
  51. 51.
    S. Wojtyła, P. Klama, and T. Baran, Is 3D printing safe? analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon, Journal of Occupational and Environmental Hygiene 14 (2017), no. 6, 80–85.Google Scholar
  52. 52.
    L. Trhlíková, O. Zmeskal, P. Psencik, and P. Florian, Study of the thermal properties of filaments for 3D printing, AIP Conference Proceedings 1752 (2016), 040027.Google Scholar
  53. 53.
    C. Duran, V. Subbian, M. T. Giovanetti, J. R. Simkins, and F. R. Beyette, Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol, Rapid Prototyping Journal 21 (2015), no. 5, 528–534.Google Scholar
  54. 54.
    A. Goyanes, A. B. M. Buanz, A. W. Basit, and S. Gaisford, Fused-filament 3D printing (3DP) for fabrication of tablets, International Journal of Pharmaceutics 476 (2014), 88–92.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic Materials and School of PhysicsUniversity of WollongongWollongongAustralia

Personalised recommendations