Skip to main content
Log in

A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. H. Siegel, IEEE Trans. Microw. Theory Tech., 55(3), 910 (2002)

    Article  Google Scholar 

  2. G.P. Gallerano et al., in Proceedings of the 2004 FEL Conference, 2004, pp 216–221

  3. P. Shumyatsky, R.R. Alfano. J Biomed Opt.,16(3):033001 (2011)

    Article  Google Scholar 

  4. R.A. Lewis, J. Phys. D: Appl. Phys, 47(37), 1(2014)

    Article  Google Scholar 

  5. M. J. Fitch, in Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications, ed. by M. Baudelet, (Woodhead Publishing Limited, 2014), p.362

  6. M. Tonouchi, Nat. Photon. 1, 97 (2007)

    Article  Google Scholar 

  7. P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photon. Rev., 5(1), 124 (2011)

    Article  Google Scholar 

  8. K. Kawase et Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express 11, 2549 (2003)

    Article  Google Scholar 

  9. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M.Tonouchi, Opt. Express 13 (1), 115 (2005)

    Article  Google Scholar 

  10. B. Ferguson, X.C. Zhang, Nat. Mater. 1, 26 (2002)

    Article  Google Scholar 

  11. B. M. Fischer, M. Walther, P.U. Jepsen, Phys. Med. Biol. 47(21), 3807 (2002)

    Article  Google Scholar 

  12. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005)

    Article  Google Scholar 

  13. M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, J. Appl. Phys. 100, 103104 (2006)

    Article  Google Scholar 

  14. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, M. C. Kemp, Appl. Phys. Lett. 86 (24), 241116 (2005)

    Article  Google Scholar 

  15. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield,M. Pepper, Med. Biol. 47 (21), 3853 (2002)

    Article  Google Scholar 

  16. P. C. Ashworth, E. P. MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, V. P. Wallace, Opt. Express 17(15), 12444 (2009)

    Article  Google Scholar 

  17. P.F. Taday, Philos. Trans. A Math. Phys. Eng. Sci. 362, 1815 (2004)

    Article  Google Scholar 

  18. Y.C. Shen, Int. J. Pharm. 417(1–2), 48 (2011)

    Article  Google Scholar 

  19. J. A. Zeitler, in Analytical Techniques in the Pharmaceutical Sciences, ed. by A. Müllertz, Y. Perrie, T. Rades (Springer 2016), p. 171

  20. B.B. Hu, M.C. Nuss, Opt. Lett. 20(16), 1716 (1995)

    Article  Google Scholar 

  21. D. Grischkowsky, S. Keiding, M.V. Exter, Ch. Fattinger, J. Opt. Soc. Am. B 7(10), 2006 (1990)

    Article  Google Scholar 

  22. M.C. Beard, G. M. Turner, C. A. Schmuttenmaer, J. Phys. Chem. B 106, 7146 (2002)

    Article  Google Scholar 

  23. M.C. Beard, G. M. Turner, C. A. Schmuttenmaer, Phys. Rev. B 62, 62, 15764 (2000)

    Article  Google Scholar 

  24. C. A. Schmuttenmaer Chem. Rev.104 (4), 1759 (2004)

    Article  Google Scholar 

  25. R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn, Rev. Mod. Phys. 83, 543 (2011)

  26. THz database 2.0 ,http://www.riken.jp/THzdatabase/, Accessed 1 August 2017

  27. T.R. Globus, D. L. Woolard, A. C. Samuels, B. L. Gelmont, J. Hesler, T. W. Crowe, M. Bykhovskaia, J. Appl. Phys.(91), 6105 (2002)

    Article  Google Scholar 

  28. T.R. Globus, D.L. Woolard, T. Khromova, T.W. Crowe, M. Bykhovskaia, B.L. Gelmont, J. Hesler, A.C. Samuels, J. Biol. Phys. (29), 89(2003)

    Article  Google Scholar 

  29. T. Globus, T. Dorofeeva, I. Sizov, B. Gelmont, M. Lvovska, T. Khromova, O. Chertihin, Y. Koryakina, Am. J. Biomed. Eng. 2(4), 143(2012)

    Article  Google Scholar 

  30. M.V. Exter, D.R. Grischkowsky, IEEE Trans. MicrowaVe Theory Tech. 38, 1684(1990)

    Article  Google Scholar 

  31. L. Xu, X.C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992)

    Article  Google Scholar 

  32. M. Thumm, KIT SCIENTIFIC REPORTS, 7735, 1–196 (2017)

    Google Scholar 

  33. T. Idehara, S.P. Sabchevski, J. Infrared Millim. Terahertz Waves 38(1), 62, (2017)

    Article  Google Scholar 

  34. J.B. Brubach, L. Manceron, M.Rouzires, O. Pirali, D. Balcon, F.K. Tchana, V. Boudone, M. Tudorie, T.Huet, A. Cuisset, P. Roy, AIP Conf. Proc. 1214, 81(2010)

    Article  Google Scholar 

  35. R. Plathe, D. Martin, M. J. Tobin L. Puskar, D. Appadoo, in Proc. 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, https://doi.org/10.1109/irmmw-THz.2011.6105080

  36. K. Holldack, A. Schnegg, Journal of large-scalere search facilities 2, A51 1(2016)

    Google Scholar 

  37. S. Kovalev, B. Green, T. Golz, S. Maehrlein, N. Stojanovic, A. S. Fisher, T. Kampfrath, M. Gensch, Structural Dynamics 4, 024301–1 (2017)

    Article  Google Scholar 

  38. K.N. Woods, H. Wiedemann, Chem. Phys. Lett. (393), 159(2004)

    Article  Google Scholar 

  39. K.N. Woods, H. Wiedemann, J. Chem. Phys.(123), 134507(2005)

    Article  Google Scholar 

  40. K.N. Woods, S. A. Lee, H.-Y. N. Holman, H. Wiedemann, J. Chem. Phys.(124), 224706 (2006)

    Article  Google Scholar 

  41. H. Wiedemann, D. Bocek, M. Hernamdez, C. Settakorn, J. Nucl. Mater. 248, 374(1997)

    Article  Google Scholar 

  42. S. Rimjaem, R. Farias, C. Thongbai, T. Vilaithong, H. Wiedemann, Nucl. Instr. Meth. Phys. Res. A 533(4), 258(2004)

    Article  Google Scholar 

  43. J. Saisut, K.Kusoljariyakul, S.Rimjaem, N.Kangrang, P.Wichaisirimongkol, P.Thamboon, M.W. Rhodes, C.Thongbai, Nucl. Instr. Meth. Phys. Res. A 637(1), s 99 (2011)

    Article  Google Scholar 

  44. L.S. Rothman, I.E.Gordon, Y.Babikov et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4(2013)

    Article  Google Scholar 

  45. W.B. Tiffany, “The amazing versatile proelectric”, Tech. Rep., Molectron Detectro, Inc., Oregon

  46. M.Born and E.Wolf, Principle of Optics, 6th edn. (Pergamon Press, Oxford, 1990), pp. 395

  47. G.W. Chantry, Submillimeter Spectroscopy: A Guide to the Theoretical and Experimental Physics of the Far Infrared (Academic Press, London, 1971)

    Google Scholar 

  48. E. Hecht and A. Zajac, Optics, 4th edn.(Pearson Education, Inc., publishing as Addison Wesley, San Francisco,2003)

  49. R. Ulrich, Infrared Phys. 7, 37 (1967)

    Article  Google Scholar 

  50. HITRAN on the Web, http://hitran.iao.ru, Accessed 1 August 2017

  51. K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy., (Wiley-Interscience, New York, 1971), pp.317

  52. D.M. Slocum, E.J. Slingerland, R.H. Giles, T.M. Goyette, J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013)

    Article  Google Scholar 

  53. X. Xin, H. Altan, A. Saint, D. Matten, R. R. Alfano, J. Appl. Phys. 100, 094905 (2006)

    Article  Google Scholar 

  54. A. Danylov, THz Laboratory Measurements of Atmospheric Absorption Between 6% and 52% Relative Humidity, Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, pp 1–7 (2006)

  55. R.J. Bell, Introduction Fourier Transform Spectroscopy (Academic Press, London, 1972)

    Google Scholar 

  56. J.R. Birch and T.J. Parker, in Infrared and Millimeter Waves Volume 2 :Instrumentation, ed. by K.J. Button (Academic Press, New York,1979), p.137

  57. C. M. Randall and R. D. Rawcliffe, Appl. Opt. 6(11), 1889 (1967)

    Article  Google Scholar 

  58. E.V. Loewenstein, D.R. Smith, and R.L. Morgan, Appl. Opt. 12(2), 398 (1973)

    Article  Google Scholar 

  59. J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, J. Opt. Soc. Am. B 21(7), 1379 (2004)

    Article  Google Scholar 

  60. Y.S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), pp.164

Download references

Acknowledgements

The authors would like to thank Mr. N. Kangrang, Mr. P. Wichaisirimongkol, and Mr. M.W. Rhodes for their technical supports; Prof. H. Wiedemann for his suggestions and valuable discussions; and Ms. C. Bail for her proof reading assistance. The authors would also like to acknowledge the support of the Thailand Center of Excellence in Physics (ThEP center) and the Department of Physics and Materials Science, the Faculty of Science, Chiang Mai University. Special thanks are extended to the Terahertz Technology Laboratory (TTL) at Thailand’s National Electronics and Computer Technology Center (NECTEC) for the use of THz spectroscopy system (TeraFlash) to characterize beam splitters and copper mesh filters properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saisut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saisut, J., Rimjaem, S. & Thongbai, C. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches. J Infrared Milli Terahz Waves 39, 681–700 (2018). https://doi.org/10.1007/s10762-018-0491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0491-5

Keywords

Navigation