A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

  • J. Saisut
  • S. Rimjaem
  • C. Thongbai


A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.


Short electron bunches Accelerator-based THz radiation Coherent THz transition radiation THz spectroscopy DFTS 



The authors would like to thank Mr. N. Kangrang, Mr. P. Wichaisirimongkol, and Mr. M.W. Rhodes for their technical supports; Prof. H. Wiedemann for his suggestions and valuable discussions; and Ms. C. Bail for her proof reading assistance. The authors would also like to acknowledge the support of the Thailand Center of Excellence in Physics (ThEP center) and the Department of Physics and Materials Science, the Faculty of Science, Chiang Mai University. Special thanks are extended to the Terahertz Technology Laboratory (TTL) at Thailand’s National Electronics and Computer Technology Center (NECTEC) for the use of THz spectroscopy system (TeraFlash) to characterize beam splitters and copper mesh filters properties.


  1. 1.
    P. H. Siegel, IEEE Trans. Microw. Theory Tech., 55(3), 910 (2002)CrossRefGoogle Scholar
  2. 2.
    G.P. Gallerano et al., in Proceedings of the 2004 FEL Conference, 2004, pp 216–221Google Scholar
  3. 3.
    P. Shumyatsky, R.R. Alfano. J Biomed Opt.,16(3):033001 (2011)CrossRefGoogle Scholar
  4. 4.
    R.A. Lewis, J. Phys. D: Appl. Phys, 47(37), 1(2014)CrossRefGoogle Scholar
  5. 5.
    M. J. Fitch, in Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications, ed. by M. Baudelet, (Woodhead Publishing Limited, 2014), p.362Google Scholar
  6. 6.
    M. Tonouchi, Nat. Photon. 1, 97 (2007)CrossRefGoogle Scholar
  7. 7.
    P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photon. Rev., 5(1), 124 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Kawase et Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express 11, 2549 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M.Tonouchi, Opt. Express 13 (1), 115 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Ferguson, X.C. Zhang, Nat. Mater. 1, 26 (2002)CrossRefGoogle Scholar
  11. 11.
    B. M. Fischer, M. Walther, P.U. Jepsen, Phys. Med. Biol. 47(21), 3807 (2002)CrossRefGoogle Scholar
  12. 12.
    J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond. Sci. Technol. 20, S266 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Lu, J. Shen, N. Li, Y. Zhang, C. Zhang, L. Liang, and X. Xu, J. Appl. Phys. 100, 103104 (2006)CrossRefGoogle Scholar
  14. 14.
    Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, M. C. Kemp, Appl. Phys. Lett. 86 (24), 241116 (2005)CrossRefGoogle Scholar
  15. 15.
    R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield,M. Pepper, Med. Biol. 47 (21), 3853 (2002)CrossRefGoogle Scholar
  16. 16.
    P. C. Ashworth, E. P. MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, V. P. Wallace, Opt. Express 17(15), 12444 (2009)CrossRefGoogle Scholar
  17. 17.
    P.F. Taday, Philos. Trans. A Math. Phys. Eng. Sci. 362, 1815 (2004)CrossRefGoogle Scholar
  18. 18.
    Y.C. Shen, Int. J. Pharm. 417(1–2), 48 (2011)CrossRefGoogle Scholar
  19. 19.
    J. A. Zeitler, in Analytical Techniques in the Pharmaceutical Sciences, ed. by A. Müllertz, Y. Perrie, T. Rades (Springer 2016), p. 171Google Scholar
  20. 20.
    B.B. Hu, M.C. Nuss, Opt. Lett. 20(16), 1716 (1995)CrossRefGoogle Scholar
  21. 21.
    D. Grischkowsky, S. Keiding, M.V. Exter, Ch. Fattinger, J. Opt. Soc. Am. B 7(10), 2006 (1990)CrossRefGoogle Scholar
  22. 22.
    M.C. Beard, G. M. Turner, C. A. Schmuttenmaer, J. Phys. Chem. B 106, 7146 (2002)CrossRefGoogle Scholar
  23. 23.
    M.C. Beard, G. M. Turner, C. A. Schmuttenmaer, Phys. Rev. B 62, 62, 15764 (2000)CrossRefGoogle Scholar
  24. 24.
    C. A. Schmuttenmaer Chem. Rev.104 (4), 1759 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn, Rev. Mod. Phys. 83, 543 (2011)Google Scholar
  26. 26.
    THz database 2.0 ,, Accessed 1 August 2017
  27. 27.
    T.R. Globus, D. L. Woolard, A. C. Samuels, B. L. Gelmont, J. Hesler, T. W. Crowe, M. Bykhovskaia, J. Appl. Phys.(91), 6105 (2002)CrossRefGoogle Scholar
  28. 28.
    T.R. Globus, D.L. Woolard, T. Khromova, T.W. Crowe, M. Bykhovskaia, B.L. Gelmont, J. Hesler, A.C. Samuels, J. Biol. Phys. (29), 89(2003)CrossRefGoogle Scholar
  29. 29.
    T. Globus, T. Dorofeeva, I. Sizov, B. Gelmont, M. Lvovska, T. Khromova, O. Chertihin, Y. Koryakina, Am. J. Biomed. Eng. 2(4), 143(2012)CrossRefGoogle Scholar
  30. 30.
    M.V. Exter, D.R. Grischkowsky, IEEE Trans. MicrowaVe Theory Tech. 38, 1684(1990)CrossRefGoogle Scholar
  31. 31.
    L. Xu, X.C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992)CrossRefGoogle Scholar
  32. 32.
    M. Thumm, KIT SCIENTIFIC REPORTS, 7735, 1–196 (2017)Google Scholar
  33. 33.
    T. Idehara, S.P. Sabchevski, J. Infrared Millim. Terahertz Waves 38(1), 62, (2017)CrossRefGoogle Scholar
  34. 34.
    J.B. Brubach, L. Manceron, M.Rouzires, O. Pirali, D. Balcon, F.K. Tchana, V. Boudone, M. Tudorie, T.Huet, A. Cuisset, P. Roy, AIP Conf. Proc. 1214, 81(2010)CrossRefGoogle Scholar
  35. 35.
    R. Plathe, D. Martin, M. J. Tobin L. Puskar, D. Appadoo, in Proc. 2011 International Conference on Infrared, Millimeter, and Terahertz Waves,
  36. 36.
    K. Holldack, A. Schnegg, Journal of large-scalere search facilities 2, A51 1(2016)Google Scholar
  37. 37.
    S. Kovalev, B. Green, T. Golz, S. Maehrlein, N. Stojanovic, A. S. Fisher, T. Kampfrath, M. Gensch, Structural Dynamics 4, 024301–1 (2017)CrossRefGoogle Scholar
  38. 38.
    K.N. Woods, H. Wiedemann, Chem. Phys. Lett. (393), 159(2004)CrossRefGoogle Scholar
  39. 39.
    K.N. Woods, H. Wiedemann, J. Chem. Phys.(123), 134507(2005)CrossRefGoogle Scholar
  40. 40.
    K.N. Woods, S. A. Lee, H.-Y. N. Holman, H. Wiedemann, J. Chem. Phys.(124), 224706 (2006)CrossRefGoogle Scholar
  41. 41.
    H. Wiedemann, D. Bocek, M. Hernamdez, C. Settakorn, J. Nucl. Mater. 248, 374(1997)CrossRefGoogle Scholar
  42. 42.
    S. Rimjaem, R. Farias, C. Thongbai, T. Vilaithong, H. Wiedemann, Nucl. Instr. Meth. Phys. Res. A 533(4), 258(2004)CrossRefGoogle Scholar
  43. 43.
    J. Saisut, K.Kusoljariyakul, S.Rimjaem, N.Kangrang, P.Wichaisirimongkol, P.Thamboon, M.W. Rhodes, C.Thongbai, Nucl. Instr. Meth. Phys. Res. A 637(1), s 99 (2011)CrossRefGoogle Scholar
  44. 44.
    L.S. Rothman, I.E.Gordon, Y.Babikov et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4(2013)CrossRefGoogle Scholar
  45. 45.
    W.B. Tiffany, “The amazing versatile proelectric”, Tech. Rep., Molectron Detectro, Inc., OregonGoogle Scholar
  46. 46.
    M.Born and E.Wolf, Principle of Optics, 6th edn. (Pergamon Press, Oxford, 1990), pp. 395Google Scholar
  47. 47.
    G.W. Chantry, Submillimeter Spectroscopy: A Guide to the Theoretical and Experimental Physics of the Far Infrared (Academic Press, London, 1971)Google Scholar
  48. 48.
    E. Hecht and A. Zajac, Optics, 4th edn.(Pearson Education, Inc., publishing as Addison Wesley, San Francisco,2003)Google Scholar
  49. 49.
    R. Ulrich, Infrared Phys. 7, 37 (1967)CrossRefGoogle Scholar
  50. 50.
    HITRAN on the Web,, Accessed 1 August 2017
  51. 51.
    K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy., (Wiley-Interscience, New York, 1971), pp.317Google Scholar
  52. 52.
    D.M. Slocum, E.J. Slingerland, R.H. Giles, T.M. Goyette, J. Quant. Spectrosc. Radiat. Transfer 127, 49 (2013)CrossRefGoogle Scholar
  53. 53.
    X. Xin, H. Altan, A. Saint, D. Matten, R. R. Alfano, J. Appl. Phys. 100, 094905 (2006)CrossRefGoogle Scholar
  54. 54.
    A. Danylov, THz Laboratory Measurements of Atmospheric Absorption Between 6% and 52% Relative Humidity, Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, pp 1–7 (2006)Google Scholar
  55. 55.
    R.J. Bell, Introduction Fourier Transform Spectroscopy (Academic Press, London, 1972)Google Scholar
  56. 56.
    J.R. Birch and T.J. Parker, in Infrared and Millimeter Waves Volume 2 :Instrumentation, ed. by K.J. Button (Academic Press, New York,1979), p.137Google Scholar
  57. 57.
    C. M. Randall and R. D. Rawcliffe, Appl. Opt. 6(11), 1889 (1967)CrossRefGoogle Scholar
  58. 58.
    E.V. Loewenstein, D.R. Smith, and R.L. Morgan, Appl. Opt. 12(2), 398 (1973)CrossRefGoogle Scholar
  59. 59.
    J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, J. Opt. Soc. Am. B 21(7), 1379 (2004)CrossRefGoogle Scholar
  60. 60.
    Y.S. Lee, Principles of Terahertz Science and Technology (Springer, 2009), pp.164Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Plasma and Beam Physics Research Facility, Department of Physics and Materials ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Thailand Center of Excellence in Physics, Commission on Higher EducationBangkokThailand

Personalised recommendations