Skip to main content
Log in

Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Schnars, C. Falldorf, J. Watson, W. Jüptner, Digital holography (Springer Berlin, 2005).

  2. P. Langehanenberg, G. von Bally, B. Kemper, 3D Res. 2, 4 (2011).

  3. B. Kemper, G. Bally, Appl. Opt. 47, A52 (2008).

    Article  Google Scholar 

  4. B. Javid, E. Tajahuerce, Opt. Lett. 25, 610 (2000).

    Article  Google Scholar 

  5. M. Tonouchi, Nat. Photonics 1, 97 (2007).

    Article  Google Scholar 

  6. D. M. Mittleman, Sensing with THz radiation (Springer, 2003).

  7. M. S. Heimbeck, M. K. Kim, D. A. Gregory, H. O. Everitt, Opt. Express 19, 9192 (2011).

    Article  Google Scholar 

  8. S. Ding, Q. Li, Y. Li, Q. Wang, Opt. Lett. 36, 1993 (2011).

    Article  Google Scholar 

  9. K. Xue, Q. Li, Y. Li, Q. Wang, Opt. Lett. 37, 3228 (2012).

    Article  Google Scholar 

  10. E. Hack, P. Zolliker, Opt. Express 22, 16079 (2014).

    Article  Google Scholar 

  11. L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, Y. Wang, Opt. Express 22, 17236 (2014).

    Article  Google Scholar 

  12. L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, Z. Zhou, Sci. Reports 5, 8445 (2015).

    Article  Google Scholar 

  13. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, P. De Natale, Sci. Reports 5, 13566 (2015).

    Article  Google Scholar 

  14. H. Zolliker, E. Hack, Opt. Express 23, 10957 (2015).

    Article  Google Scholar 

  15. M. S. Heimbeck, W.-R. Ng, D. R. Golish, M. E. Gehm, H. O. Everitt, IEEE Trans. THz Sci. Technol. 5, 110 (2015).

    Article  Google Scholar 

  16. L. Valzania, P. Zolliker, E. Hack, Opt. Express 25, 11038 (2017).

    Article  Google Scholar 

  17. B. S. Williams, Nat. Photon. 1, 517 (2007).

    Article  Google Scholar 

  18. S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).

    Article  Google Scholar 

  19. N. Oda, C. R. Phys. 11, 496 (2010).

    Article  Google Scholar 

  20. M. K. Kim, L. Yu, C. J. Mann, J. Opt. A: Pure Appl. Opt. 8, S518 (2006).

    Article  Google Scholar 

  21. T. C. Poon, J. P. Liu, Introduction to modern digital holography with MATLAB (Cambridge University Press, 2014).

  22. Y.-D. Hsieh, S. Nakamura, D. G. Abdelsalam, T. Minamikawa, Y. Mizutani, H. Yamamoto, T. Iwata, F. Hindle, T. Yasui, Sci. Reports 6, 28114 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants for Exploratory Research for Advanced Technology (ERATO) MINOSHIMA Intelligent Optical Synthesizer (IOS) Project (JPMJER1304) from the Japanese Science and Technology Agency and Research Grant 2015 from Mitutoyo Association for Science and Technology, Japan. The authors gratefully acknowledge Prof. Qing Hu of Massachusetts Institute of Technology for his help in preparation of the THz-QCL device and the Kagawa University Nanotechnology Supporting Office as part of the “Nanotechnology Project” in the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for its help in the preparation and evaluation of the semiconductor sample. We also wish to acknowledge Ms. Natsuko Takeichi of Tokushima University for her help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yasui.

Electronic supplementary material

Video 1

(MOV 718 kb)

Video 2

(MOV 2.01 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagiwa, M., Ogawa, T., Minamikawa, T. et al. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction. J Infrared Milli Terahz Waves 39, 561–572 (2018). https://doi.org/10.1007/s10762-018-0482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0482-6

Keywords

Navigation