A Model of High-Frequency Self-Mixing in Double-Barrier Rectifier

Article

Abstract

In this paper, a new model of the frequency dependence of the double-barrier THz rectifier is presented. The new structure is of interest because it can be realized by CMOS image sensor technology. Its application in a complex field such as that of THz receivers requires the availability of an analytical model, which is reliable and able to highlight the dependence on the parameters of the physical structure. The model is based on the hydrodynamic semiconductor equations, solved in the small signal approximation. The model depicts the mechanisms of the THz modulation of the charge in the depleted regions of the double-barrier device and explains the self-mixing process, the frequency dependence, and the detection capability of the structure. The model thus substantially improves the analytical models of the THz rectification available in literature, mainly based on lamped equivalent circuits.

Keywords

THz sensor Double-barrier rectifier Pinned photodiode CMOS 

Notes

Acknowledgments

The authors would like to thank Aptina for allowing the realization of the test structure in the state-of-art CMOS IS technology.

References

  1. 1.
    Al Hadi, R., Sherry, H., Grzyb, J., Baktash, N., Zhao, Y., Öjefors, E., Pfeiffer, U., Microwave Symposium Digest (MTT), 2011 I.E. MTT-S International (pp. 1–4), (2011).Google Scholar
  2. 2.
    Lisauskas, A., Boppel, S., Krozer, V., & Roskos, H. G., Sensors, 2011 I.E. (pp. 55–58). (2011).Google Scholar
  3. 3.
    Grzyb, J., Sherry, H., Zhao, Y., Al Hadi, R., Cathelin, A., Kaiser, A., & Pfeiffer, U., SPIE Defense, Security, and Sensing (pp. 83620C–83620C). International Society for Optics and Photonics (2012).Google Scholar
  4. 4.
    Corcos, D., Brouk, I., Malits, M., Svetlitza, A., Stolyarova, S., Abramovich, A., Nemirovsky, Y., Microwaves, Communications Antennas and Electronics Systems (COMCAS), 2011 I.E. International Conference on (pp. 1–4). (2011).Google Scholar
  5. 5.
    Dyakonov, M., & Shur, M., IEEE Transactions on Electron Devices, 43(3), 380–387 (1996).Google Scholar
  6. 6.
    Schuster, F., Coquillat, D., Videlier, H., Sakowicz, M., Teppe, F., Dussopt, L., Knap, W., Optics Express, 19(8), 7827–7832 (2011).CrossRefGoogle Scholar
  7. 7.
    Zhu, Y., Ji, X., Liao, Y., Wu, F., & Yan, F., Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on (pp. 1–3). (2014).Google Scholar
  8. 8.
    Varlamava, V., De Amicis, G., Del Monte, A., Perticaroli, S., Rao, R., Palma, F., Journal of Infrared, Millimeter, and Terahertz Waves, 37(8), 737–752 (2016).CrossRefGoogle Scholar
  9. 9.
    Fossum, E. R., & Hondongwa, D. B., IEEE J. Electron Devices Soc., 2(3), 33–43 (2014).CrossRefGoogle Scholar
  10. 10.
    Siles, J. V., & Grajal, J., IEEE Transactions on Microwave Theory and Techniques, 58(7), 1933–1942 (2010).CrossRefGoogle Scholar
  11. 11.
    Shashkin, V. I., & Vostokov, N. V., IEEE Journal of the Electron Devices Society, 1(3), 76–82 (2013).CrossRefGoogle Scholar
  12. 12.
    Champlin, K. S., & Eisenstein, G., IEEE Transactions on Microwave Theory and Techniques, 26(1), 31–34 (1978).CrossRefGoogle Scholar
  13. 13.
    Han, R., Zhang, Y., Coquillat, D., Videlier, H., Knap, W., & Brown, E., IEEE Journal of Solid-State Circuits, 46(11), 2602–2612 (2011).CrossRefGoogle Scholar
  14. 14.
    Shiktorov, P., Starikov, E., Gruzinskis, V., Pérez, S., González, T., Reggiani, L, Vaissiere, J. C., IEEE Electron Device Letters, 25(1), 1–3.Google Scholar
  15. 15.
    Palma, F., Das, P. K. (1987). Acoustoelectric interaction in layered semiconductor. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 34(3), 376–382 (2004).Google Scholar
  16. 16.
    Varlamava, V., Palma, F., Nenzi, P., Balucani, M., IEEE Transactions on Terahertz Science and Technology, 4(3), 360–367 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rome Università La SapienzaRomeItaly

Personalised recommendations