Advertisement

Terahertz Sub-harmonic Mixer Using Discrete Schottky Diode for Planetary Science and Remote Sensing

Article

Abstract

Sub-harmonic mixers are the core element of terahertz room temperature, high spectral resolution heterodyne receivers for planetary science, and remote sensing. Here, terahertz sub-harmonic mixer up to 400 GHz using discrete Schottky diode is presented. Measured performance is in agreement with results from the linear and nonlinear co-simulations, and this methodology shows its practicability for the discrete planar GaAs Schottky diode-based terahertz core circuit design.

Keywords

Sub-harmonic mixer Terahertz Planetary science Remote sensing Discrete Schottky diodes 

Notes

Acknowledgements

The authors wish to thank Professor Alain Maestrini for his continuous support and for his precious advices. The authors also acknowledge Dr. Shi Shengcai for his help in the measurement preparation. Discussion with Dr. Jeanne Treuttel about the circuit simulation is also acknowledged. The work proposed in this paper is supported by the National Natural Science Foundation of China (Grant Nos. 11303004 and 11573007) and the National Natural Science Foundation of Jiangsu, China (Grant No. BK20130637).

References

  1. 1.
    Jiménez C, Buehler S A, Rydberg B, et al. Performance simulations for a submillimetre-wave satellite instrument to measure cloud ice[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(S2):129–149.CrossRefGoogle Scholar
  2. 2.
    Surussavadee C, Surussavadee C. Passive millimeter-wave retrieval of global precipitation utilizing satellites and a numerical weather prediction model[J]. Massachusetts Institute of Technology, 2007.Google Scholar
  3. 3.
    Bizzarri B, et al. Geostationary Observatory for Microwave Atmospheric Sounding (GOMAS), A Demonstration Mission of the Feasibility of Frequent Precipitation Observation and Nearly-All-Weather Temperature-Humidity Sounding From IGeoLab. Submitted to ESA in response to the call for ideas for explorer mission, 2005. 4, 6Google Scholar
  4. 4.
    Defer E, Prigent C, Aires F, et al. Development of precipitation retrievals at millimeter and sub‐millimeter wavelengths for geostationary satellites[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D8):693–702.CrossRefGoogle Scholar
  5. 5.
    Treuttel J, Gatilova L, Maestrini A, Yang F, et al. A 520–620-GHz Schottky Receiver Front-End for Planetary Science and Remote Sensing With 1070 K–1500 K DSB Noise Temperature at Room Temperature[J]. IEEE Transactions on Terahertz Science & Technology, 2015, 6:1–8.Google Scholar
  6. 6.
    Siles J. A room-temperature all-solid-state 4.7 THz multiplied LO source to enable the heterodyne observation of interstellar neutral oxygen[J]. 2012.Google Scholar
  7. 7.
    Janusz G, Ullrich P. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(10): 998–1032.CrossRefGoogle Scholar
  8. 8.
    Thomas B, Gill J, Maestrini A, et al. An integrated 520–600 GHz sub-harmonic mixer and tripler combination based on GaAs MMIC membrane planar Schottky diodes[C]// International Conference on Infrared Millimeter and Terahertz Waves. IEEE, 2010:1–2.Google Scholar
  9. 9.
    Erickson N R, Goyette T M. Terahertz Schottky-diode balanced mixers[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2010, 7215(1):83–94.Google Scholar
  10. 10.
    VDI 1.8-2.8 THz Mixer 2010 September Newsletter, http://vadiodes.com/
  11. 11.
    Sobis P, Drakinskiy V, Emrich A, et al. 300 GHz to 1.2 THz GaAs Schottky membrane TMIC’s for next generation space missions[J]. International Symposium on Space Terahertz Techniques, 2013.Google Scholar
  12. 12.
    X.F. Yang, Study on terahertz subharmonic mixer based on the planar schottky diode[D], Doctoral dissertation of University of Electronic Science and Technology of China.Google Scholar
  13. 13.
    M. V. Schneider, Millimeter-Wave Integrated Circuits[C], IEEE G-MTT International Microwave Symposium, Boulder, CO, USA, 1973:16–18.Google Scholar
  14. 14.
    Schlecht E, Gill J, Siegel P, et al. Novel Designs for Submillimeter Subharmonic and Fundamental Schottky Mixers[C]// Fourteenth International Symposium on Space Terahertz Technology. Fourteenth International Symposium on Space Terahertz Technology, 2003:118.Google Scholar
  15. 15.
    T. W. Crowe and R. J. Mattauch, Analysis and Optimization of Millimeter-And Submillimeter-Wavelength Mixer Diodes[J], IEEE Transactions on Microwave Theory and Techniques, vol. 35, no. 2, Feb 1987:159–168.Google Scholar
  16. 16.
    Crowe T W. GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 1989, 10(7):765–777.CrossRefGoogle Scholar
  17. 17.
    Osvald J, Dobrocka E. Generalized approach to the parameter extraction from, I-V characteristics of Schottky diodes[J]. Semiconductor Science & Technology, 1999, 11(8):1198.CrossRefGoogle Scholar
  18. 18.
    Thomas B, Maestrini A, Beaudin G. Design of a broadband sub-harmonic mixer using planar Schottky diodes at 330 GHz[C]// Conference Digest of the 2004 Joint, International Conference on Infrared and Millimeter Waves, 2004 and, International Conference on Terahertz Electronics. IEEE, 2004:457–458.Google Scholar
  19. 19.
    Sas A. Numerical analysis of a 330 GHz sub-harmonic mixer with planar Schottky diodes, LERMA, Observatoire de Paris, France[J].Google Scholar
  20. 20.
    Thomas B, Maestrini A, Gill J, et al. A Broadband 835–900-GHz Fundamental Balanced Mixer Based on Monolithic GaAs Membrane Schottky Diodes[J]. IEEE Transactions on Microwave Theory & Techniques, 2010, 58(7):1917–1924.CrossRefGoogle Scholar
  21. 21.
    Treuttel J, Gatilova L, Yang F, et al. A 330 GHz frequency doubler using European MMIC Schottky process based on e-beam lithography[C], General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI. IEEE, 2014:1–4.Google Scholar
  22. 22.
    Siles J V, Grajal J, Krozer V, et al. Schottky diode-based mixers design and optimization at millimetre and submillimetre-wave bands[C]// Microwave Conference, 2005 European. IEEE, 2005.Google Scholar
  23. 23.
    Crowe T W, Bishop W L, Porterfield D W, et al. Opening the terahertz window with integrated diode circuits[J]. Solid-State Circuits, IEEE Journal of, 2005, 40(10):2104–2110.CrossRefGoogle Scholar
  24. 24.
    Grajal J, Krozer V, Gonzalez E, et al. Characterisation of Schottky Diode Performance by Numerical Simulation Coupled with Harmonic Balance[C]// Microwave Conference, 1997. European. IEEE, 1997:190–195.Google Scholar
  25. 25.
    Leech J, Tan B K, Yassin G, et al. Measured Performance of a 230 GHz Prototype Focal-plane Feedhorn Array Made by Direct Drilling of Smooth-walled Horns[C]// International Symposium on Space Terahertz Technology. Twenty-First International Symposium on Space Terahertz Technology, 2010.Google Scholar
  26. 26.
    Treuttel J, Thomas B, Maestrini A, et al. A 380 GHz Sub-harmonic Mixer using MMIC Foundry Based Schottky Diodes Transferred onto Quartz Substrate[C]// Twentieth International Symposium on Space Terahertz Technology. Twentieth International Symposium on Space Terahertz Technology, 2009.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations