Advertisement

Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band

  • Oupeng Li
  • Yong Zhang
  • Lei Wang
  • Ruimin Xu
  • Wei Cheng
  • Yuan Wang
  • Haiyan Lu
Article

Abstract

This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.

Keywords

InP DHBT Small-signal model Electromagnetic (EM) simulation Amplifier 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2013J020).

References

  1. 1.
    L. Samoska, “An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime”, IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 9–24, 2011CrossRefGoogle Scholar
  2. 2.
    M. Urteaga, “InP HBTs for THz frequency integrated circuits”, IEEE Int. Conf. Indium Phosphide Related Materials, 2011.Google Scholar
  3. 3.
    K. Eriksson, S. E. Gunnarsson, V. Vassilev and H. Zirath, “Design and Characterization of H-Band (220–325 GHz) Amplifiers in a 250-nm InP DHBT Technology,” IEEE Trans. THz Sci. Technol., vol. 4, no. 1, pp. 56–64, Jan. 2014.Google Scholar
  4. 4.
    J. Kim, S. Jeon, M. Kim, M. Urteaga and J. Jeong, “H-Band Power Amplifier Integrated Circuits Using 250-nm InP HBT Technology,” IEEE Trans. THz Sci. Technol., vol. 5, no. 2, pp. 215–222, March 2015.Google Scholar
  5. 5.
    Ou-Peng Li, Yong Zhang, Rui-Min Xu et al. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology. Chin. Phys. B, 25(5):058401, 2016Google Scholar
  6. 6.
    T. B. Reed et al., “A 220 GHz InP HBT Solid-State Power Amplifier MMIC with 90 mW POUT at 8.2 dB Compressed Gain,” IEEE Int. Conf. Indium Phosphide Related Materials 2012Google Scholar
  7. 7.
    Jongwon Yun, Namhyung Kim, Daekeun Yoon, Hyunchul Kim, Sanggeun Jeon and Jae-Sung Rieh, “A 248–262 GHz InP HBT VCO with Interesting Tuning Behavior,” IEEE Microw. Wirel. Co., vol. 24, no. 8, pp. 560–562, Aug. 2014.Google Scholar
  8. 8.
    D. Yoon, J. Yun and J. S. Rieh, “A 310–340-GHz Coupled-Line Voltage-Controlled Oscillator Based on 0.25 μm InP HBT Technology,” IEEE Trans. THz Sci. Technol., vol. 5, no. 4, pp. 652–654, July 2015.Google Scholar
  9. 9.
    M. Seo et al., “A single-chip 630 GHz transmitter with 210 GHz sub-harmonic PLL local oscillator in 130 nm InP HBT,” Microwave Symposium Digest (MTT), IEEE MTT-S International, Montreal, QC, Canada, 2012Google Scholar
  10. 10.
    T. K. Johansen, R. Leblanc, J. Poulain and V. Delmouly, “Direct Extraction of InP/GaAsSb/InP DHBT Equivalent-Circuit Elements From S -Parameters Measured at Cut-Off and Normal Bias Conditions,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 115–124, Jan. 2016.Google Scholar
  11. 11.
    A. Oudir, M. Mahdouani and R. Bourguiga, “Direct Extraction Method of HBT Equivalent-Circuit Elements Relying Exclusively on S-Parameters Measured at Normal Bias Conditions,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 1973–1982, Aug. 2011.Google Scholar
  12. 12.
    P. Sakalas, M. Schroter and H. Zirath, “mm-Wave noise modeling in advanced SiGe and InP HBTs”, J. Comput. Electronics, pp. 13, 2015Google Scholar
  13. 13.
    K. H. K. Yau, P. Chevalier, A. Chantre and S. P. Voinigescu, “Characterization of the Noise Parameters of SiGe HBTs in the 70–170-GHz Range,”IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 8, pp. 1983–2000, Aug. 2011.Google Scholar
  14. 14.
    C. I. Lee, Y. T. Lin, B. R. Su and W. C. Lin, “SiGe HBT Large-Signal Table-Based Model With the Avalanche Breakdown Effect Considered,” IEEE Transactions on Electron Devices, vol. 62, no. 1, pp. 75–82, Jan. 2015.Google Scholar
  15. 15.
    B. L. Ooi, Z. Zhong, Y. Wang, X. C. Shan and A. Lu, “A Distributed Millimeter-Wave Small-Signal HBT Model Based on Electromagnetic Simulation,” IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2667–2674, Sept. 2008.Google Scholar
  16. 16.
    Keysight manualGoogle Scholar
  17. 17.
    M. Schroter, S. Lehmann, S. Fregonese and T. Zimmer, “A computationally efficient physics-based compact bipolar transistor model for circuit Design-part I: model formulation,” IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 279–286, Feb. 2006.Google Scholar
  18. 18.
    S. Fregonese et al., “A computationally efficient physics-based compact bipolar transistor model for circuit Design-part II: parameter extraction and experimental results,” IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 287–295, Feb. 2006.Google Scholar
  19. 19.
    C. C. McAndrew et al., “VBIC95, the vertical bipolar inter-company model,” IEEE Journal of Solid-State Circuits, vol. 31, no. 10, pp. 1476–1483, Oct 1996.Google Scholar
  20. 20.
    S. E. Gunnarsson, N. Wadefalk, I. Angelov, H. Zirath, I. Kallfass and A. Leuther, “A 220 GHz (G-Band) Microstrip MMIC Single-Ended Resistive Mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 215–217, March 2008.Google Scholar
  21. 21.
    S. E. Gunnarsson et al., “A 220 GHz Single-Chip Receiver MMIC With Integrated Antenna,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 284–286, April 2008.Google Scholar
  22. 22.
    S. P. Voinigescu et al., “Characterization and Modeling of an SiGe HBT Technology for Transceiver Applications in the 100–300-GHz Range,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4024–4034, Dec. 2012.Google Scholar
  23. 23.
    K. H. K. Yau, E. Dacquay, I. Sarkas, and S. P. Voinigescu, “On-wafer silicon device and circuit characterization above 100 GHz,” IEEE Microw. Mag., vol. 13, pp. 30–54, Feb. 2012.Google Scholar
  24. 24.
    T. K. Johansen, C. Jiang, D. Hadziabdic and V. Krozer, “EM simulation accuracy enhancement for broadband modeling of on-wafer passive components,” Microwave Integrated Circuit Conference, EuMIC 2007. European, Munich, pp. 447–450, 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fundamental Science on EHF LaboratoryUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Science and Technology on Monolithic Integrated Circuits and Modules LaboratoryNanjing Electronic Devices InstituteNanjingPeople’s Republic of China

Personalised recommendations