Dielectric Structure with Periodic Strips for Increasing Radiation Power of Photoconductive Antennas: Theoretical Analysis

Article

Abstract

Low terahertz (THz) radiation power and low efficiency are the well-known drawbacks of photoconductive antennas (PCAs). To increase THz-radiation power of PCAs, a dielectric structure with periodic low-temperature-grown GaAs strips is proposed. Transmitted power of the proposed structure is obtained from a theoretical model, and further confirmed by finite element simulations. Results show that the structure is capable to transmit into the substrate 90 % of the power of transverse magnetic wave with wavelength as wide as from 0.7 to 1.0 μm. Favorability of this property gets amplified when power transmission in a wide range of frequency bandwidth is desired, e.g., for optical pulse with short duration time incident to PCA, which generates carriers in the semiconductor that create THz emission. Furthermore, the proposed dielectric structure with periodic strips, the whole structure placed in between electrodes of PCA is considered, and analyzed by the existing photoconductive antenna equivalent circuit model, to see how power radiation changes. Interestingly, THz-radiation power enhancements of 70 and 20 % are evinced for, respectively, 20 and 150 mW incident optical powers as instances, as compared to PCA without strips in the gap area.

Keywords

Periodic dielectric strips Photoconductive antenna Radiation power 

Notes

Acknowledgments

We thank the anonymous reviewers for many helpful comments and suggestions.

References

  1. 1.
    Y. S. Lee, “Principles of terahertz science and technology”, vol. 170. Springer Science & Business Media, (2009)Google Scholar
  2. 2.
    T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices”, Journal of Infrared, Millimeter, and Terahertz Waves 35(1), 118 (2014)Google Scholar
  3. 3.
    J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs”, Semiconductor Science and Technology 20(7), S266 (2005)Google Scholar
  4. 4.
    D. Saeedkia, “Handbook of terahertz technology for imaging, sensing and communications”, Elsevier, (2013)Google Scholar
  5. 5.
    C. Jordens, N. Krumbholz, T. Hasek, N. Vieweg, B. Scherger, L. Bahr, M. Mikulics, M. Koch, “Fibre-coupled terahertz transceiver head”, Electronics Letters 44(25), 1473 (2008)Google Scholar
  6. 6.
    N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, B. Bastian, M. Mikulics, M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy”, Polymer Testing 28(1), 30 (2009)Google Scholar
  7. 7.
    N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range”, Optics Express 18(6), 6097 (2010)Google Scholar
  8. 8.
    R. Wilk, F. Breitfeld, M. Mikulics, M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device”, Applied Optics 47(16), 3023 (2008)Google Scholar
  9. 9.
    C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz”, Applied Physics Letters 91(13), 131122 (2007)Google Scholar
  10. 10.
    G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources”, IEEE Transactions on Terahertz Science and Technology 1(1), 33 (2011)Google Scholar
  11. 11.
    G. Gallerano, S. Biedron, “Overview of terahertz radiation sources”, Proceedings of the 2004 FEL Conference (2004), pp. 216-221Google Scholar
  12. 12.
    P. H. Siegel, P. de Maagt, A. I. Zaghloul, “Antennas for terahertz applications”, 2006 IEEE Antennas and Propagation Society International Symposium (IEEE, 2006), pp. 2383-2386Google Scholar
  13. 13.
    M. Mikulics, E. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. Van der Hart, H. Bochem, H. Lüth, P. Kordoš, “Traveling-wave photomixer with recessed interdigitated contacts on low-temperature-grown GaAs”, Applied Physics Letters 88(4), 041118 (2006)Google Scholar
  14. 14.
    N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas”, Optics Express 16(24), 19695 (2008)Google Scholar
  15. 15.
    M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on lowtemperature- grown GaAs using alloyed contacts”, IEEE Photonics Technology Letters 20(12), 1054 (2008)Google Scholar
  16. 16.
    M. Mikulics, M. Marso, M. Lepsa, D. Grutzmacher, P. Kordos, “Output power improvement in MSM photomixers by modified finger contacts configuration”, IEEE Photonics Technology Letters 21(3), 146 (2009)Google Scholar
  17. 17.
    I. C. Mayorga, M. Mikulics, A. Schmitz, P. Van der Wal, R. Gusten, M. Marso, P. Kordos, H. Luth, “An optimization of terahertz local oscillators based on LT-GaAs technology”, SPIE Astronomical Telescopes+ Instrumentation (International Society for Optics and Photonics, 2004), pp 537-547Google Scholar
  18. 18.
    M. Xu, M. Mittendorff, R. J. Dietz, H. K¨unzel, B. Sartorius, T. Göbel, H. Schneider, H. Helm, S. Winnerl, “Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 μm”, Applied Physics Letters 103(25), 251114 (2013)Google Scholar
  19. 19.
    M. R. Stone, M. Naftaly, R. E. Miles, J. R. Fletcher, D. P. Steenson, “Electrical and radiation characteristics of semilarge photoconductive terahertz emitters” IEEE Transactions on Microwave Theory and Techniques 52(10), 2420 (2004)Google Scholar
  20. 20.
    A. Taylor, G. Rodriguez, D. Some, “Ultrafast field dynamics in large-aperture photoconductors”, Optics Letters 22(10), 715 (1997)Google Scholar
  21. 21.
    C. Headley, L. Fu, P. Parkinson, X. Xu, J. Lloyd-Hughes, C. Jagadish, M. B. Johnston, “Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation”, IEEE Journal of Selected Topics in Quantum Electronics 17(1), 17 (2011)Google Scholar
  22. 22.
    P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo,S. H. Hsu, Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns”, Advanced Materials 21(16), 1618 (2009)Google Scholar
  23. 23.
    F. D. Brunner, T. Feurer “Antireflection coatings optimized for single-cycle THz pulses”, Applied Optics 52(16), 3829 (2013)Google Scholar
  24. 24.
    X. Yan, D. J. Poxson, J. Cho, R. E. Welser, A. K. Sood, J. K. Kim, E. F. Schubert, “Enhanced omnidirectional photovoltaic performance of solar cells using multiple-discretelayer tailored-and low-refractive index anti-reflection coatings”, Advanced Functional Materials 23(5), 583 (2013)Google Scholar
  25. 25.
    C. W. Berry, M. Jarrahi. “Plasmonic photoconductive antennas for high power terahertz generation”, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (IEEE, 2012), pp. 1-2Google Scholar
  26. 26.
    C. W. Berry, M. Jarrahi, “High-performance photoconductive terahertz sources based on nanoscale contact electrode gratings”, Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International (IEEE, 2012), pp. 1-3Google Scholar
  27. 27.
    S. H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes”, IEEE Transactions on Terahertz Science and Technology 4(5), 575 (2014)Google Scholar
  28. 28.
    M. Khorshidi, G. Dadashzadeh, “Periodic metallic stepped-slits for entire transmission of optical wave and efficient transmission of terahertz wave”, arXiv preprint arXiv:1610.03520 (2016)
  29. 29.
    P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas”, JOSA B 13(11), 2424 (1996)Google Scholar
  30. 30.
    K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas”, Journal of the European Optical Society-Rapid publications 4 (2009).Google Scholar
  31. 31.
    L. Juul, M. Mikulics, M. F. Pereira, M. Marso, “Numerical study of high impedance T-match antennas for terahertz photomixers”, Optical and Quantum Electronics 47(4), 913 (2015)Google Scholar
  32. 32.
    G. Guarino, W. Donaldson, M. Mikulics, M. Marso, P. Kordoš, R. Sobolewski, “Finite element simulation of metalsemiconductormetal photodetector”, Solid-State Electronics 53(10), 1144 (2009)Google Scholar
  33. 33.
    E. Moreno, M. F. Pantoja, F. G. Ruiz, J. B. Roldán, S. G. García, “On the numerical modeling of terahertz photoconductive antennas”, Journal of Infrared, Millimeter, and Terahertz Waves 35(5), 432 (2014)Google Scholar
  34. 34.
    N. Khiabani, Y. Huang, Y. C. Shen, S. Boyes, “Theoretical modeling of a photoconductive antenna in a terahertz pulsed system”, IEEE Transactions on Antennas and Propagation 61(4), 1538 (2013)Google Scholar
  35. 35.
    M. Khorshidi, G. Dadashzadeh, “Hybrid analytical-numerical analysis of plasmonic photoconductive antennas”, Applied Computational Electromagnetics Society Journal 31(5) (2016)Google Scholar
  36. 36.
    M. Khorshidi, G. Dadashzadeh. “Plasmonic photoconductive antennas with rectangular and stepped rods: a theoretical analysis” JOSA B 33(12), 2502 (2016)Google Scholar
  37. 37.
    M. Tani, S. Matsuura, K. Sakai, S. I. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs”, Applied Optics 36(30), 7853 (1997)Google Scholar
  38. 38.
    R. B. R. Hwang, “Periodic structures: mode-matching approach and applications in electromagnetic engineering”, John Wiley & Sons, (2012)Google Scholar
  39. 39.
    J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide”, Journal of Applied Physics 53(10), R123 (1982)Google Scholar
  40. 40.
    J. Piprek, “Semiconductor optoelectronic devices: introduction to physics and simulation”, Academic Press, (2013)Google Scholar
  41. 41.
    S. M. Sze, K. K. Ng, “Physics of semiconductor devices”, John wiley & sons, (2006)Google Scholar
  42. 42.
    N. Khiabani, Y. Huang, Y. C. Shen, S. Boyes, Q. Xu, “A novel simulation method for THz photoconductive antenna characterization”, Antennas and Propagation (EuCAP), 2013 7th European Conference on (IEEE, 2013), pp.751-754Google Scholar
  43. 43.
    N. Khiabani, Y. Huang, Y. C. Shen. “Discussions on the main parameters of THz photoconductive antennas as emitters”, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP) (IEEE, 2011), pp. 462-466Google Scholar
  44. 44.
    Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas”, Applied Physics Letters 71(15), 2076 (1997)Google Scholar
  45. 45.
    G. C. Loata, “Investigation of low-temperature-grown GaAs photoconductive antennae for continuous-wave and pulsed terahertz generation”, Ph.D. dissertation, Goethe- University, Frankfurt (2007).Google Scholar
  46. 46.
    V. N. Bessolov, M. V. Lebedev, “Chalcogenide passivation of III-V semiconductor surfaces”, Semiconductors 32(11), 1141 (1998)Google Scholar
  47. 47.
    J. Oh, H. C. Yuan, H. M. Branz, “An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures”, Nature Nanotechnology 7(11), 743 (2012)Google Scholar
  48. 48.
    C. Kang, J. W. Leem, J. W. Lee, J. S. Yu, C. S. Kee, “Characteristics of terahertz pulses from antireflective GaAs surfaces with nanopillars”, Journal of Applied Physics 113(20), 203102 (2013)Google Scholar
  49. 49.
    D. Saeedkia, A. H. Majedi, S. Safavi-Naeini, R. R. Mansour, “Analysis and design of a photoconductive integrated photomixer/antenna for terahertz applications”, IEEE Journal of Quantum Electronics 41(2), 234 (2005)Google Scholar
  50. 50.
    E. Michael, M. Mikulics “Losses from long-living photoelectrons in terahertz-generating continuous-wave photomixers”, Applied Physics Letters 100(19), 191112 (2012)Google Scholar
  51. 51.
    S. Verghese, K. McIntosh, E. Brown. “Optical and terahertz power limits in the lowtemperature- grown GaAs photomixers”, Applied Physics Letters 71(19), 2743 (1997)Google Scholar
  52. 52.
    M. Mikulics, R. Adam, M. Marso, A. Forster, P. Kordos, H. Luth, S. Wu, X. Zheng, R. Sobolewski, “Ultrafast low-temperature-grown epitaxial GaAs photodetectors transferred on flexible plastic substrates”, IEEE Photonics Technology Letters 17(8), 1725 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohammadreza Khorshidi
    • 1
  • Gholamreza Dadashzadeh
    • 1
  1. 1.Department of Electrical and Electronic EngineeringShahed UniversityTehranIran

Personalised recommendations