Advertisement

Photoconductive LT-GaAs Terahertz Antennas: Correlation Between Surface Quality and Emission Strength

  • O. M. Abdulmunem
  • K. I. Hassoon
  • J. Völkner
  • M. Mikulics
  • K. I. Gries
  • J. C. Balzer
Article

Abstract

We investigate the influence of the surface properties of a low-temperature-grown GaAs photoconductive antenna on the terahertz (THz) emission strength, using a specially designed THz time-domain spectroscopy system. The system allows us to excite six different positions along the 10 μm gap of a coplanar stripline antenna with a length of 10 mm without changing the alignment of the optical or THz beam path. A comparison to the surface roughness and the grain size which are extracted from an atomic force and a scanning electron microscope is given.

Keywords

THz time-domain spectroscopy Low-temperature grown GaAs Photoconductive antenna Coplanar stripline 

References

  1. 1.
    S. Leinß, T. Kampfrath, K. V. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, Terahertz coherent control of optically dark paraexcitons in Cu2O, Phys. Rev. Lett. 101, 246401 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, and M. Koch, Terahertz spectroscopy on polymers: A review of morphological studies, J. Mol. Struct. 1006, 41–51 (2011).CrossRefGoogle Scholar
  3. 3.
    I. Ivanov, M. Bonn, Z. Mics, and D. Turchinovich, Perspective on terahertz spectroscopy of graphene, EPL Europhysics Lett. 111, 67001 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Herrmann, M. Tani, K. Sakai, and R. Fukasawa, Terahertz imaging of silicon wafers, J. Appl. Phys. 91, 1247–1250 (2002).CrossRefGoogle Scholar
  5. 5.
    S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, Terahertz imaging: A new non-destructive technique for the quality control of plastic weld joints, J. Eur. Opt. Soc. 2, 2–6 (2007).Google Scholar
  6. 6.
    C. Jördens and M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy, Opt. Eng. 47, 37003 (2008).CrossRefGoogle Scholar
  7. 7.
    A. Soltani, S. F. Busch, P. Plew, J. C. Balzer, and M. Koch, THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids, J. Infrared, Millimeter, Terahertz Waves 37, 1001–1006 (2016).CrossRefGoogle Scholar
  8. 8.
    M. Reuter, O. M. Abdulmunem, J. C. Balzer, M. Koch, and D. G. Watson, Using Terahertz Time-Domain Spectroscopy to Discriminate among Water Contamination Levels in Diesel Engine Oil, Trans. ASABE 59, 795–801 (2016).Google Scholar
  9. 9.
    R. Gente, S. F. Busch, E.-M. Stubling, L. M. Schneider, C. B. Hirschmann, J. C. Balzer, and M. Koch, Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy, IEEE Trans. Terahertz Sci. Technol. 6, 1–3 (2016).CrossRefGoogle Scholar
  10. 10.
    P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE J. Quantum Electron. 24, 255–260 (1988).CrossRefGoogle Scholar
  11. 11.
    Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q. Wu, X. C. Zhang, and J. F. Federici, Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection, Appl. Phys. Lett. 73, 444 (1998).CrossRefGoogle Scholar
  12. 12.
    N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, Terahertz-time domain spectrometer with 90 dB peak dynamic range, J. Infrared, Millimeter, Terahertz Waves 35, 823–832 (2014).CrossRefGoogle Scholar
  13. 13.
    M. Suzuki and M. Tonouchi, Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses, Appl. Phys. Lett. 86, 163504 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters, Appl. Phys. Lett. 101, 101105 (2012).CrossRefGoogle Scholar
  15. 15.
    E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer, Appl. Phys. Lett. 64, 3311 (1994).CrossRefGoogle Scholar
  16. 16.
    S. Matsuura, M. Tani, and K. Sakai, Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas, Appl. Phys. Lett. 70, 559 (1997).CrossRefGoogle Scholar
  17. 17.
    R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, Continuous wave terahertz spectrometer as a noncontact thickness measuring device, Appl. Opt. 47, 3023 (2008).CrossRefGoogle Scholar
  18. 18.
    D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Low-temperature atomic assembly of stoichiometric gallium arsenide from equiatomic vapor, J. Cryst. Growth 286, 197–204 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett. 59, 3276 (1991).CrossRefGoogle Scholar
  20. 20.
    Z. Liliental-Weber, H. J. Cheng, S. Gupta, J. Whitaker, K. Nichols, and F. W. Smith, Structure and carrier lifetime in LT-GaAs, J. Electron. Mater. 22, 1465–1469 (1993).CrossRefGoogle Scholar
  21. 21.
    S. Verghese, K. a. McIntosh, and E. R. Brown, Optical and terahertz power limits in the low-temperature-grown GaAs photomixers, Appl. Phys. Lett. 71, 2743 (1997).CrossRefGoogle Scholar
  22. 22.
    M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs, Appl. Opt. 36, 7853 (1997).CrossRefGoogle Scholar
  23. 23.
    N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, Impact of the contact metallization on the performance of photoconductive THz antennas, Opt. Express 16, 19695 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Mikulics, Xuemei Zheng, R. Adam, R. Sobolewski, and P. Kordos, High-speed photoconductive switch based on low-temperature GaAs transferred on SiO/sub 2/-Si substrate, IEEE Photonics Technol. Lett. 15, 528–530 (2003).CrossRefGoogle Scholar
  25. 25.
    M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. van der Hart, P. Kordos, H. Luth, and R. Sobolewski, Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low-temperature-grown GaAs, IEEE Photonics Technol. Lett. 18, 820–822 (2006).CrossRefGoogle Scholar
  26. 26.
    M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Güsten, M. Marso, A. van der Hart, H. P. Bochem, H. Lüth, and P. Kordoš, Traveling-wave photomixer with recessed interdigitated contacts on low-temperature-grown GaAs, Appl. Phys. Lett. 88, 41118 (2006).CrossRefGoogle Scholar
  27. 27.
    O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, High Accuracy Terahertz Time-Domain System for Reliable Characterization of Photoconducting Antennas, Microw. Opt. Technol. Lett. 59, 468–472 (2017).CrossRefGoogle Scholar
  28. 28.
    C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9, 671–675 (2012).CrossRefGoogle Scholar
  29. 29.
    J. Y. W. Seto, The electrical properties of polycrystalline silicon films, J. Appl. Phys. 46, 5247 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • O. M. Abdulmunem
    • 1
  • K. I. Hassoon
    • 2
  • J. Völkner
    • 3
  • M. Mikulics
    • 4
  • K. I. Gries
    • 1
  • J. C. Balzer
    • 1
  1. 1.Department of Physics and Materials Science CenterPhilipps-University of MarburgMarburgGermany
  2. 2.Department of Applied SciencesUniversity of TechnologyBaghdadIraq
  3. 3.Faculty of PhysicsPhilipps University MarburgMarburgGermany
  4. 4.Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations