Advertisement

A Free-Space Measurement Technique of Terahertz Dielectric Properties

  • Xiansheng Zhang
  • Tianying Chang
  • Hong-Liang Cui
  • Zhonglin Sun
  • Chuanfa Yang
  • Xiuwei Yang
  • Lingyu Liu
  • Wei Fan
Article

Abstract

The free-space method for material dielectric characterization in the microwave band is extended to terahertz frequencies. By analyzing the advantages and disadvantages of the relative permittivity of the transmission/reflection method for non-magnetic materials, a fast calculation method using a transmission-only method is proposed. Based on the convergence analysis of the algorithm, a method to estimate the initial value is also proposed. Finally, through measurements of the permittivity of high-density polyethylene, polystyrene, polypropylene, and polymethyl methacrylate in the 325–500 GHz band, we verify the rationality of the algorithm and demonstrate its applicability. Through the combination of the two methods, the terahertz dielectric properties of a majority of flat non-conducting solid materials and non-polar liquid materials can be measured.

Keywords

Terahertz Free space Calibration Transmission-only method Initial value estimate 

Notes

Acknowledgements

This work is supported by the Department of Science and Technology of Shandong Province (Project Numbers 2015GGX101030 and 2016GGX101010), the Ministry of Science and Technology of China (Project Number 2015DFA11200), and the Shandong Provincial Natural Science Foundation (Project Number ZR2014FP007), the Youth Science Funds of Shandong Academy of Sciences, and the Innovation Program of the Shandong Academy of Sciences.

References

  1. 1.
    X. M. Liu, “Dielectric and measurement techniques,” (Beijing University of Posts and Telecommunications, Beijing, 2015), pp. 40–46Google Scholar
  2. 2.
    L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, “Microwave Electronics: Measurement and Materials Characterization,” West Sussex, U. K. Wiley, 2004.Google Scholar
  3. 3.
    H. H. Ouslimani, R. Abdeddaim, and A. Priou, “Free-Space Electromagnetic Characterization of Materials for Microwave and Radar Applications,” Piers Online, 1(2): 128–132, 2005.CrossRefGoogle Scholar
  4. 4.
    S. O. Nelson, “Measurement of microwave dielectric properties of particulate materials,” J. Food Eng, 21(3): 365–384, 1994.CrossRefGoogle Scholar
  5. 5.
    M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics, 1(2): 97–105, 2007.CrossRefGoogle Scholar
  6. 6.
    “Agilent Technologies: Basics of Measuring the Dielectric Properties of Materials,” Measurement Techniques: Application Note, 5989–2589EN, 2005.Google Scholar
  7. 7.
    H. S. Ku, J. A. R. Ball, E. Siores, and P. Chan, “Microwave Processing and Permittivity Measurement of Thermoplastic Composites at Elevated Temperatures,” In: 12th International Conference on Composite Materials, pp. 5–9, 1999.Google Scholar
  8. 8.
    S. O. Nelson, P. G. Bartley, “Open-ended coaxial-line permittivity measurements on pulverized materials,” IEEE Trans. Instrum. Meas., 47(1): 133–137, 1998.CrossRefGoogle Scholar
  9. 9.
    E. Li, Z. P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, “Broadband Measurements of Dielectric Properties of Low-Loss Materials at High Temperatures Using Circular Cavity Method,” Prog. Electromagn. Res., 92(4): 103–120, 2009.CrossRefGoogle Scholar
  10. 10.
    D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas., 39(2): 387–394, 1990.CrossRefGoogle Scholar
  11. 11.
    M. Imparato, T. Weller, L. Dunleavy. “On-wafer calibration using space-conservative (SOLT) standards”, Int. Microwave Symp. Dig., 4(4): 1643–1646, 1999.Google Scholar
  12. 12.
    I. Rolfes, and B. Schiek, “Calibration methods for microwave free space measurements,” Radio Sci., 13(1): 3–8, 1984.Google Scholar
  13. 13.
    T. F. Dion, “W-band Free Space Permittivity Measurement Setup for Candidate Radome Materials”, NASA Contractor Report 201720 Contract NASA1-96014, pp. 1–9, 1997.Google Scholar
  14. 14.
    P. G. Bartley, and S. B. Begley, “A new free-space calibration technique for materials measurement,” IEEE International Instrumentation & Measurement Technology Conference, pp. 47–51, 2012.Google Scholar
  15. 15.
    F. H. Wee, P. J. Soh, A. H. M. Suhaizal, H. Nornikman, and A. A. M. Ezanuddin, “Free Space Measurement Technique on Dielectric Properties of Agricultural Residues at Microwave Frequencies,” International Microwave and Optoelectronics Conference (IMOC 2009), Belem, Brazil, pp. 182–187, 2009.Google Scholar
  16. 16.
    A. M. Nicolson, and G. F. Ross, “Measurement of the intrinsic properties of materials by time domain techniques”, IEEE Trans. Instrum. Meas., IM-19(4): 377–382, 1970.CrossRefGoogle Scholar
  17. 17.
    W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE, 62(1): 33–36, 1974.CrossRefGoogle Scholar
  18. 18.
    D. F. Williams, “500GHz-750GHz rectangular waveguide vector network analyzer calibrations,” IEEE Trans. Terahertz Sci. Technol., 1(2): 364–377, 2011.CrossRefGoogle Scholar
  19. 19.
    G. L. Friedsam, M. Biebl, “A broadband free-space dielectric properties measurement system at millimeter wavelengths,” IEEE Trans. Instrum. Meas., 46(2): 515–518, 1997.CrossRefGoogle Scholar
  20. 20.
    U. C. Hasar, and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microwave Theory Tech., 57(2): 471–477, 2009.CrossRefGoogle Scholar
  21. 21.
    J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, “Improved technique for determining complex permittivity with the transmission/reflection method”, IEEE Trans. Microwave Theory Tech., 38(8):1096–1103, 1990.CrossRefGoogle Scholar
  22. 22.
    D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies,” IEEE Trans. Instrum. Meas., 38(3): 789–793, 1989.CrossRefGoogle Scholar
  23. 23.
    J. A. R. Ball, B. Horsfield, “Resolving ambiguity in broadband waveguide permittivity measurements on moist materials,” IEEE Trans. Instrum. Meas., 47(2): 390–392, 1998.CrossRefGoogle Scholar
  24. 24.
    O. Büyüköztürk, T. Y. Yu, and J. A. Ortega, “A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements,” Cement & Concrete Composition, 28(4): 349–359, 2006.CrossRefGoogle Scholar
  25. 25.
    E. Hakansson, A. Amie, and A. Kaynak, “Dielectric characterization of conducting textiles using free space transmission measurements: Accuracy and methods for improvement,” Synth. Met., 157(24): 1054–1063, 2007.CrossRefGoogle Scholar
  26. 26.
    A. Kazemipour, M. Hudlicka, M. Salhi, and T. Kleine-Ostmann, “Free-space quasi-optical spectrometer for material characterization in the 50–500 GHz frequency range,” 44th European Microwave Conference, pp. 636–639, 2014.Google Scholar
  27. 27.
    Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc., 49(2):513–517, 2006.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiansheng Zhang
    • 1
  • Tianying Chang
    • 1
    • 2
  • Hong-Liang Cui
    • 2
  • Zhonglin Sun
    • 1
  • Chuanfa Yang
    • 1
  • Xiuwei Yang
    • 1
  • Lingyu Liu
    • 1
  • Wei Fan
    • 2
  1. 1.Institute of AutomationShandong Academy of SciencesJinanChina
  2. 2.College of Instrumentation and Electrical EngineeringJilin UniversityChangchunChina

Personalised recommendations