Advertisement

Low-Cost Dielectric Reflective Surface for Low-Level Backscattered Diffuse Reflections

  • Mustafa K. Taher Al-Nuaimi
  • Wei Hong
  • Xiqi Gao
Article

Abstract

This article presents the design of non-subwavelength, non-resonant, and non-absorptive dielectric surface that creates a low-level backward diffuse reflections under illumination of a far-field plane wave at millimeter wave regime. Thus, radar cross section reduction of a solid metallic object can be achieved. The dielectric surface is consist of unit cells of only two different electric permittivity (ε r1 = 6.14 and ε r2 = 3.49) distributed across the surface aperture to achieve low-level backscattered diffuse reflections. The unit cells used are having non-subwavelength size (0.53λ80GHz) which ensures an easier fabrication of the presented surface using low cost simple PCB technology, in particular at high frequencies. RCS reduction of more than 10 dBsm is achieved from 70 to 87 GHz (BW ≈ 21.65 %) using the presented dielectric surface of optimized permittivity distribution. The RCS reduction capabilities of the presented surface are studied theoretically under both normal and oblique incidences and then fabricated and verified experimentally by reflectivity measurements.

Keywords

Radar cross section Diffuse reflections 

References

  1. 1.
    H. Singh and R. M. Jha, Active Radar Cross Section Reduction: Theory and Applications, Cambridge University Press, 1st edition, March 2, 2015.Google Scholar
  2. 2.
    “Simpler, low-cost stealth”, Electronics Letters, vol. 51, Issue 2, pp. 127, Jan. 2015,Google Scholar
  3. 3.
    R. Fante and M. McCormack,“Reflection properties of the Salisbury screen,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 10, pp. 1443–1454, Oct 1988.Google Scholar
  4. 4.
    W. Chen, C.A. Balanis, and C. Birtcher,”Checkerboard EBG Surfaces for Wideband Radar Cross Section Reduction,” IEEE Transactions on Antennas and Propagation, vol.PP, no.99, pp.1-1,2015.Google Scholar
  5. 5.
    W. Chen and C.A. Balanis,”Bandwidth Enhancement for RCS Reduction Using Checkerboard EBG Surfaces,” 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), pp.1-2, 13–16 July 2014.Google Scholar
  6. 6.
    A. Edalati and K. Sarabandi,”Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Transactions on Antennas and Propagation, vol. 62, no.2, pp.747-754, Feb. 2014.Google Scholar
  7. 7.
    Y. Zhao, C. Yu, J. Gao, X. Yao, T. Liu, W. Li, S. Li,”Broadband Metamaterial Surface for Antenna RCS Reduction and Gain Enhancement,” IEEE Transactions on Antennas and Propagation, no.99, pp.1-1,2015.Google Scholar
  8. 8.
    D. Schurig, et al., “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” SCIENCE, 314(5801), p. 977–980, 2006.MathSciNetCrossRefGoogle Scholar
  9. 9.
    W.S. Cai, et. al,”Optical Cloaking With Metamaterials,” Nature Photonics, 1(4), pp. 224–227, 2007.Google Scholar
  10. 10.
    A. Tellechea, J.C. Iriarte, I. Ederra, and R. Gonzalo,”Planar EBG Technology Chessboard Configuration to Reduce RCS In W Band”, 7th European Conference on Antennas and Propagation (EuCAP), pp.3935-3938, 8–12 April 2013.Google Scholar
  11. 11.
    J.C. Iriarte, M. Paquay, I. Ederra, R. Gonzalo, P. de Maagt, “RCS Reduction in a Chessboard Like Structure using AMC Cells”, The Second European Conference on Antennas and Propagation (EuCAP), 2007.Google Scholar
  12. 12.
    J.C. I. Galarregui, A. T. Pereda, J. L. M. de Falcon, I. Ederra, R. Gonzalo, P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Transactions on Antennas and Propagation,, vol.61, no.12,pp.6136-6143,Dec.2013.Google Scholar
  13. 13.
    C. M. Watts, X. Liu, and W. J. Padilla,”Metamaterial Electromagnetic Wave Absorbers,” Advanced optical material,vol.24, pp. 98–120,2012.Google Scholar
  14. 14.
    N. I. Landy, et al.,” Perfect Metamaterial Absorber,” Physics Review Letters 100, 20740, 2008.CrossRefGoogle Scholar
  15. 15.
    Y. Li, et al.,” Ultra-Wide-Band Microwave Composite Absorbers Based on Phase Gradient Metasurfaces,” Progress In Electromagnetics Research M, vol. 40, pp. 9–18, 2014.Google Scholar
  16. 16.
    Y. F. Li, J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu and A. X. Zhang,”Wideband Radar Cross Section Reduction Using Two-Dimensional Phase Gradient Metasurfaces,” Applied Physics Letters 104, 221110,2014.CrossRefGoogle Scholar
  17. 17.
    H. Li, G. Wang, H. Xu, T. Cai, and J. Liang,” X-Band Phase-Gradient Metasurface for High-Gain Lens Antenna Application,” IEEE Transactions on Antennas and Propagation, vol. 63, no.11, pp.5144-5149, 2015.Google Scholar
  18. 18.
    N. F. Yu and F. Capasso, “Flat Optics with Designer Metasurfaces,” Nature Materials, vol.13, pp.139–150, 2014.Google Scholar
  19. 19.
    M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, “Non-uniform Metasurface Luneburg Lens Antenna Design,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 9, pp. 4065–4073, Sep. 2012.Google Scholar
  20. 20.
    S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing Waves on Impenetrable Metasurfaces,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1499–1502, 2011.CrossRefGoogle Scholar
  21. 21.
    C.L. Holloway, et al.,” An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, April 2012.Google Scholar
  22. 22.
    Y. Song, J. Ding, C. Guo, Y. Ren, and J. Zhang, “Ultra Broadband Backscatter Radar Cross Section Reduction Based on Polarization In-sensitive Metasurface," IEEE Antennas and Wireless Propagation Letters, vol.PP, no.99, pp.1-1,2015.Google Scholar
  23. 23.
    X. M. Yang, G. L. Jiang, X. G. Liu, and C. X. Weng, “Suppression of Specular Reflections by Metasurface with Engineered Nonuniform Distribution of Reflection Phase”, Hindawi International Journal of Antennas and Propagation, Article ID 560403, January 2015.Google Scholar
  24. 24.
    K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui,” Broadband and Broad-Angle Low-Scattering Metasurface Based on Hybrid Optimization Algorithm”, Scientific Reports 4, no. 5935, 2014.Google Scholar
  25. 25.
    D. S. Dong, et al., “Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions,” Advanced Optical Materials, 2015.Google Scholar
  26. 26.
    Z. M. Gu, B. Liang, X. Y. Zou, and J. C. Cheng,”Broadband diffuse reflections of sound by metasurface with random phase response,” Europhysics Letters, vol.111, no. 6,2015.Google Scholar
  27. 27.
    X. M. Yang, X. Y. Zhou, Q. Cheng, H. F. Ma, and Tie Jun Cui,” Diffuse Reflections by Randomly Gradient Index Metamaterials,” Optics Letters, vol. 35, Issue 6, pp. 808–810, 2010.CrossRefGoogle Scholar
  28. 28.
    C. D. Giovampaola and N. Engheta,” Digital metamaterials,” Nature Materials, vol. 13, no. 12, pp.1115–1121, Dec 2014.Google Scholar
  29. 29.
    T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng,” Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials,” Light: Science and Applications, 3, 2014.Google Scholar
  30. 30.
    L.-H. Gao, et al.,”Broadband diffusion of terahertz waves by multi-bit coding metasurfaces,” Light: Science and Applications, 4, 2015.Google Scholar
  31. 31.
    L. J. Liang, et. al,” Anomalous Terahertz Reflection and Scattering by Flexible and Conformal Coding Metamaterials,” Advanced Optical Materials, June 2015.Google Scholar
  32. 32.
    S. Liu, et. al,”Polarization-controlled anisotropic coding metamaterials at terahertz frequencies,”, physics optics,2015.Google Scholar
  33. 33.
    Y. Xin, L. Lan-Ju, Z. Ya-Ting, D. Xin, and Y. Jian-Quan,”A Coding Metasurfaces Used For Wideband Radar Cross Section Reduction In Terahertz Frequencies,” Acta Physica Sinica, vol. 64, no. 15, pp. 158101–158101, 2015.Google Scholar
  34. 34.
    X. Yan, et. al,”Broadband, Wide-angle, Low-scattering Terahertz Wave by a Flexible 2-bit Coding Metasurface,” Optics Express, vol.23, no.22,pp.29128-29137,2015.Google Scholar
  35. 35.
    R. Kakimi, er. al,” Capture Of A Terahertz Wave In A Photonic-Crystal Slab,” Nature Photonics, Vol. 8, 2014.Google Scholar
  36. 36.
    S. Jahani and Zubin Jacob,”All-dielectric Metamaterials,” Nature Nanotechnology 11, 23–36 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Arbabi, et. al.,” Dielectric Metasurfaces For Complete Control Of Phase And Polarization With Subwavelength Spatial Resolution And High Transmission,” Nature Nanotechnology 10,937–943 (2015)Google Scholar
  38. 38.
    M. K. T. Al-Nuaimi and W. Hong,”Monostatic RCS reduction at mmWaves,” 2015 Asia-Pacific Microwave Conference, Nanjing,China,2015.Google Scholar
  39. 39.
    A. Petosa and A. Ittipiboon, “Design and Performance of a Perforated Dielectric Fresnel Lens,” Proceedings of IEE Microwaves, Antennas and Propagation, vol. 150, no. 5, pp. 309–314, Oct 2003.Google Scholar
  40. 40.
    CST Microwave Studio, 2010. Website: https://www.cst.com.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mustafa K. Taher Al-Nuaimi
    • 1
  • Wei Hong
    • 1
  • Xiqi Gao
    • 2
  1. 1.State Key Laboratory of Millimeter waves, School of Information Science and EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.National Mobile Communications Research LaboratorySoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations