Uncertainty in Terahertz Time-Domain Spectroscopy Measurement of Liquids

  • Fei Yang
  • Liping Liu
  • Maojiang Song
  • Feng Han
  • Li Shen
  • Pengfei Hu
  • Fang Zhang


Terahertz time-domain spectroscopy (THz-TDS) is a significant technique for characterizing materials as it allows fast and broadband measurement of optical constants in the THz regime. The measurement precision of the constants is highly influenced by the complicated measurement procedure and data processing. Taking THz transmission measurement of liquids into account, the sources of error existing in THz-TDS process are identified. The contributions of each source to the uncertainty of optical constants in THz-TDS process are formulated, with particular emphasis on the effect of multilayer reflections and plane wave assumption. As a consequence, an analytical model is proposed for uncertainty evaluation in a THz-TDS measurement of liquids. An actual experiment with a Di 2-Ethyl Hexyl Phthalate (DEHP) sample is carried out to show that the proposed model could be a basis to evaluate the measurement precision of optical constants of liquids.


THz Time-domain spectroscopy (TDS) Measurement uncertainty Optical constant 


Funding Information

This study was funded by the National Natural Science Foundation of China (NSFC) (21503045, 61540038); Guizhou Science and Technology Department (J20142107, SY20143065); and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2014QK063).


  1. 1.
    Timothy D. Dorney, Richard G. Baraniuk, and Daniel M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A, Vol. 18, No. 7, pp. 1562–1571, 2001.Google Scholar
  2. 2.
    Fischer B M, Helm H, Jepsen P U. “Chemical Recognition with Broadband THz Spectroscopy,” Proceedings of the IEEE, 2007, 95(8):1592-1604.CrossRefGoogle Scholar
  3. 3.
    P Kužel and H Němec. “Terahertz conductivity in nanoscaled systems: effective medium theory aspects,” J. Phys. D: Appl. Phys. 47 (2014) 374005 (14pp).Google Scholar
  4. 4.
    Jeon T-I, and D. Grischkowsky. “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Applied Physics Letters 72.23(1998):3032-3034.CrossRefGoogle Scholar
  5. 5.
    Seigo O, Katsuhiko M, Hiroaki M, et al. “New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Optics Express, 2010, 18(16):17306-17312.CrossRefGoogle Scholar
  6. 6.
    M. Walther, B. Fischer, M. Schall, H. Helm, P.U. Jepsen, Chem. Phys. Lett. 332(3–4), 389 (2000)CrossRefGoogle Scholar
  7. 7.
    Naftaly, M. “Metrology Issues and Solutions in THz Time-Domain Spectroscopy: Noise, Errors, Calibration.” IEEE Sensors Journal 13.1(2013):8-17.CrossRefGoogle Scholar
  8. 8.
    H.-W. Hübers, M. F. Kimmitt, N. Hiromoto, and E. Bründermann, Terahertz spectroscopy: System and sensitivity considerations,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 321–331, 2011.CrossRefGoogle Scholar
  9. 9.
    N. Hiromoto, S. R. Tripathi, M. Takeda, and M. Aoki, “Study on random errors in THz signal and optical constants observed with THz time-domain spectroscopy,” in Proc. 35th Int. Conf. Infrared Millim. Terahertz Waves, 2010, pp. 1–2.CrossRefGoogle Scholar
  10. 10.
    L. Duvillaret, F. Garet, and J.-L. Coutaz, “Influence of noise on the characterization of materials by terahertz time-domain spectroscopy,” J. Opt. Soc. Amer. B, vol. 17, no. 3, pp. 452–461, 2000.CrossRefGoogle Scholar
  11. 11.
    W. Withayachumnankul, B. M. Fischer, H. Lin, and D. Abbott, “Uncertainty in terahertz time-domain spectroscopy measurement,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 1059–1072, 2008.CrossRefGoogle Scholar
  12. 12.
    W. Withayachumnankul, H. Lin, S. P. Mickan, B. M. Fischer, and D. Abbott, “Analysis of measurement uncertainty in THz-TDS,” Proc. SPIE, vol. 6593, p. 659326, 2007.CrossRefGoogle Scholar
  13. 13.
    A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, Direct Observation of the Gouy Phase Shift with Single-Cycle Terahertz Pulses, Phys. Rev. Lett. Vol. 83, no. 17, pp. 3410–3413, 1999.Google Scholar
  14. 14.
    P.U. Jepsen, U. Moller, H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15(22), 14717–14737 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Oka, K. Tominaga, Terahertz spectroscopy of polar solute molecules in non-polar solvents. J. Non Cryst. Solids 352(42–49), 4606–4609 (2006).CrossRefGoogle Scholar
  16. 16.
    H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).CrossRefGoogle Scholar
  17. 17.
    M. van Exter and D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).CrossRefGoogle Scholar
  18. 18.
    Amin Soltani, David Jahn, Lennart Duschek et al. “Attenuated Total Reflection Terahertz Time-Domain Spectroscopy: Uncertainty Analysis and Reduction Scheme,” IEEE Transactions on Terahertz Science and Technology, 2016, 6(1):32–39.Google Scholar
  19. 19.
    J. Letosa, M. García-Gracia, J. M. Forniés-Marquina, and J. M. Artacho, “Performance limits in TDR technique by Monte Carlo simulation,” IEEE Trans. Magn. 32, 958–961 (1996).CrossRefGoogle Scholar
  20. 20.
    N. Cohen, J. W. Handley, R. D. Boyle, S. L. Braunstein, and E. Berry, “Experimental signature of registration noise in pulsed terahertz systems,” Fluct. Noise Lett. 6, L77–L84 (2006).CrossRefGoogle Scholar
  21. 21.
    P. U. Jepsen, D. G. Cooke, M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev., Vol. 5, No. 1,124-166 (2011)CrossRefGoogle Scholar
  22. 22.
    W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for terahertz time-domain spectroscopy,” Opt. Express 16, 7382–7396 (2008).CrossRefGoogle Scholar
  23. 23.
    I. H. Lira and W. Wöger, “The evaluation of standard uncertainty in the presence of limited resolution of indicating devices,” Meas. Sci. Technol. 8, 441–443 (1997).CrossRefGoogle Scholar
  24. 24.
    T. Dorney, R. Baraniuk, and D. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” J. Opt. Soc. Am. A 18, 1562–1571 (2001).CrossRefGoogle Scholar
  25. 25.
    L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38, 409–415 (1999).CrossRefGoogle Scholar
  26. 26.
    R. Wilk, I. Pupeza, R. Cernat, M. Koch, “Highly accurate THz time-domain spectroscopy of multilayers structures,” IEEE Journal of Selected Topics In Quantum Electronics 14, 392–398 (2008).Google Scholar
  27. 27.
    P. Kužel, M. A. Khazan, and J. Kroupa, “Spatio-temporal transformations of ultrashort terahertz pulses,” J. Opt. Soc. Am. B 16(10), 1795–1800 (1999).CrossRefGoogle Scholar
  28. 28.
    P. Juzel, H. Nemec, F. Kadlec, C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy”, Optics Express, 18, 15 (2010): 15338–15348.Google Scholar
  29. 29.
    Rossi G B. The Evaluation of Measurement Uncertainty [M]//Measurement and Probability. Springer Netherlands, 2014:205–221.Google Scholar
  30. 30.
    Raul R Cordero, G. Seckmeryer and F. Labbe, “Effect of the resolution on the uncertainty evaluation,” Metroloiga, 43, L33–L38 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Guizhou Institute of MetrologyGuiyangChina
  2. 2.Guiyang Vocational and Technical CollegeGuiyangChina

Personalised recommendations