Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

  • Takuro Tajima
  • Toshihiko Kosugi
  • Ho-Jin Song
  • Hiroshi Hamada
  • Amine El Moutaouakil
  • Hiroki Sugiyama
  • Hideaki Matsuzaki
  • Makoto Yaita
  • Osamu Kagami


Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.


Terahertz communications InP Antenna-in-package technology LTCC Substrate integrated waveguide THz antennas THz transmitters 



This work was supported in part by the research and development program “Multi-tens gigabit wireless communication technology at sub-terahertz frequencies” of the Ministry of Internal Affairs and Communications, Japan.


  1. 1.
    S. Cherry, “Edholm’s Law of Bandwidth”, IEEE Spectrum, vol. 41, pp.58, July 2004.Google Scholar
  2. 2.
    J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications”, J. Appl. Phys., vol.107, no. 11, pp.1–22, 2010.Google Scholar
  3. 3.
    H.-J. Song, and T. Nagatsuma, “Present and future of terahertz communications”, IEEE Trans. THz Sci. Tech., vol. 1, pp. 256–263, Sept. 2011.Google Scholar
  4. 4.
    T. Kleine-Ostmann, and T. Nagatsuma, “A Review on Terahertz Communications Research” J. Infrared, Millimeter, and Terahertz Waves, vol.32, issue 2 , pp.143–171, Jan. 2011.Google Scholar
  5. 5.
    T. Kürner, and S. Priebe, “Towards THz Communications — Status in Research, Standardization and Regulation”, J. Infrared, Millimeter, and Terahertz Waves, vol. 35, issue 1, pp.53–62, Jan. 2014.Google Scholar
  6. 6.
    T. Schneider, “Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges”, J. Infrared Millimeter, and Terahertz Waves, vol.36, issue 2, pp.159–179, 2015.Google Scholar
  7. 7.
    H.-J. Song. K. Ajito, Y. Muramoto, A. Wakazuki, T. Nagatsuma, and N. Kukutsu, “24-Gbps data transmission in 300-GHz band for future terahertz communications”, Electron, Lett., Vol 48, No. 15, pp. 953–954, July 2012.Google Scholar
  8. 8.
    S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold and I. Kallfass, “Wireless sub-THz communication system with high data rate”, Nature Photonics, vol.7, pp.977–981, 2013.Google Scholar
  9. 9.
    E. Laskin, Edward S. Rogers Sr., P. Chevalier, B. Sautreuil, S. P. Voinigescu,“A 140-GHz double-sideband transceiver with amplitude and frequency modulation operating over a few meters”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2009.Google Scholar
  10. 10.
    A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, “10-Gbit/s Wireless Link Using InP HEMT MMICs for Generating 120-GHz-Band Millimeter-Wave Signal”, IEEE Trans. Microw. Theory & Techn., Vol. 57, No. 5, pp.1102–1109, May 2009.Google Scholar
  11. 11.
    H. Takahashi, T. Kosugi, A. Hirata, J. Takeuchi, K. Murata, and N. Kukutsu, “120-GHz-Band Fully Integrated Wireless Link Using QSPK for Realtime 10-Gbit/s Transmission”, IEEE Trans. Microw. Theory & Techn.,  Vol. 61, No. 12, pp. 4745–4753, Dec. 2013Google Scholar
  12. 12.
    J. Takeuchi, A. Hirata, H. Takahashi, N. Kukutsu, Y. Yamada, K. Kitamura, and M. Teshima, “10-Gbit/s Bidirectional and 20-Gbit/s Unidirectional 2-ch Wireless Data Transmission System Using 120-GHz-Band Finline Orthomode Transducers”, IEICE Trans. Electronics, Vol.E97–C, No.2, pp.101–110, 2014.Google Scholar
  13. 13.
    R. Fujimoto, M. Motoyoshi, K. Takano, U. Yodprasit, M. Fujishima, “A 120-GHz transmitter and receiver chipset with 9-Gbps data rate using 65-nm CMOS technology”, IEICE Transactions on Electronics Vol. E95–C No.7 pp.1154–1162, 2012.Google Scholar
  14. 14.
    I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All Active MMIC-Based Wireless Communication at 220 GHz”, IEEE Trans. THz Sci. Technol., VOL. 1, NO. 2, Nov. 2011Google Scholar
  15. 15.
    J. Antes, S. Koenig, D. Lopez-Diaz, F. Boes, A. Tessmann, R. Henneberger, O. Ambacher, T. Zwick, I. Kallfass “Transmission of an 8-PSK modulated 30 Gbit/s signal using an MMIC-based 240 GHz wireless link” IEEE MTT-S Int. Microw. Symp. Dig., pp.2–7 June 2013.Google Scholar
  16. 16.
    I. Kallfass, F. Boes, T. Messinger, J. Antes, A. Inam, U. Lewark, A. Tessmann, and R. Henneberger, “64 Gbit/s Transmission over 850 m Fixed Wireless Link at 240 GHz Carrier Frequency”, J. Infrared Millimeter, and Terahertz Waves, vol. 36, pp.221–233, 2015.Google Scholar
  17. 17.
    I. Kallfass, I. Dan, S. Rey, P. Harati, J. Antes, A. Tessmann, S. Wagner, M. Kuri, R. Weber, H. Massler, A. Leuther, T. Merkle, and T. Kürner, “Towards MMIC-Based 300 GHz Indoor Wireless Communication Systems”, IEICE Trans. Electronics, Vol. E98–C, No.12, pp.1081–1090, Nov. 2015.Google Scholar
  18. 18.
    IEEE P802.15 IG THz TED - IEEE Standards AssociationGoogle Scholar
  19. 19.
    H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma and Y. Kado, “8 Gbps wireless data transmission at 250 GHz band”, Electron. Lett., Vol. 45, No. 22, pp1121–1122, Oct. 2009.Google Scholar
  20. 20.
    H. Sugiyama, H. Matsuzaki, H. Yokoyama, and T. Enoki, “High-electron-mobility In0.53Ga0.47As / In0.8Ga0.2As composite-channel modulation-doped structures grown by metal-organic vapor-phase epitaxy”, IPRM Dig., pp. 477–480, June 2010.Google Scholar
  21. 21.
    T. Tsutsumi, T. Kosugi and H. Matsuzaki, “Wafer-level backside process technology for forming high-density vias and backside metal patterning for 50-um-thick InP substrate”, CS MANTECH Dig, pp.55–58, 2013.Google Scholar
  22. 22.
    H. Hamada, T. Kosugi, H.-J. Song, M. Yaita, A. E. Aoutaouakil, H. Matsuzaki, and A. Hirata, “300-GHz band 20-Gbps ASK transmitter module based on InP-HEMT MMICs”, in Proc. IEEE Compound Semiconductor Integrated Circuit Symposium, 2015.Google Scholar
  23. 23.
    T. Kosugi, H. Hamada, H. Takahashi, H. Song, A. Hirata, H. Matsuzaki and H. Nosaka, “250–300 GHz waveguide module with ridge-coupler and InP HEMT IC”, Proc. of APMC, pp.1133–1135, 2014.Google Scholar
  24. 24.
    H.-J. Song, J.-Y. Kim, K. Ajito, M. Yaita, and N. Kukutsu, “Fully Integrated ASK Receiver MMIC for Terahertz Communications at 300 GHz”, IEEE Trans. THz Sci. Technol., vol. 3, pp. 445–452, July 2013.Google Scholar
  25. 25.
    Y. Kawano, H. Matsumura, S. Shiba, M. Sato, T. Suzuki, Y. Nakasha, T. Takahashi, K. Makiyama, and N. Hara, “Flip Chip Assembly for Sub-millimeter Wave Amplifier MMIC on Polyimide Substrate”, IEEE MTT-S Int. Microw. Symp. Dig., 2014.Google Scholar
  26. 26.
    T. Tajima, H.-J. Song, and M. Yaita, “Compact THz LTCC receiver module for 300-GHz wireless communications,” IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 4, pp.291-293, 2016.Google Scholar
  27. 27.
    M. J. M. van der Vorst, P. J. L. de Maagt, A. Neto, A. L. Reynolds, R. M. Heeres, W. Luinge, and M. H. A. J. Herben, “Effect of Internal Reflections on the Radiation Properties and Input Impedance of Integrated Lens Antennas—Comparison Between Theory and Measurements,” IEEE Trans. Microw. Theory & Techn., Vol. 49, No. 6, pp. 1118–1125, June 2001.Google Scholar
  28. 28.
    J. Hirokawa, and M. Ando, “Single-Layer Feed Waveguide Consisting of Posts for Plane TEM Wave Excitation in Parallel Plates”, IEEE Trans. Antennas Propag, Vol. 46, No. 5, pp.625630, May 1998.Google Scholar
  29. 29.
    D. Deslandes, and K. Wu, “Integrated Microstrip and Rectangular Waveguide in Planar Form”, IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, pp.68–70, Feb. 2001.Google Scholar
  30. 30.
    J. Xu, Z. N. Chen and X. Qing, “270-GHz LTCC-Integrated Strip-Loaded Linearly Polarized Radial Line Slot Array Antenna”, IEEE Trans. Antennas Propag., Vol. 61, No. 4, pp. 1794–1801, Apr. 2013.Google Scholar
  31. 31.
    T. Tajima, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “300-GHz step-profiled corrugated horn antennas integrated in LTCC”, IEEE Trans. Antennas  Propag., Vol. 62, No. 11, pp.5437–5444, 2014.Google Scholar
  32. 32.
    T. Tajima, H.-J. Song, and M. Yaita, “Wideband probe-type microstrip-to-waveguide transition integrated in LTCC”, Electron. Lett., vol. 50, pp.194–195, 2014.Google Scholar
  33. 33.
    T. Tajima, H-J Song, and M. Yaita, “Design and analysis of LTCC-integrated planer microstrip-to-waveguide transition at 300-GHz”, IEEE Trans. Microw. Theory & Techn., vol. 64, No.1, pp106–114, Jan. 2016.Google Scholar
  34. 34.
    T. Tajima, H.-J. Song, and M. Yaita, “300-GHz Microstrip-to-Waveguide Transition on a Polyimide Substrate Integrated with an LTCC Substrate Integrated Waveguide”, IEICE Trans. Electronics, Vol. E98–C, No.12, pp.1120–1127, 2015.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.NTT Device Technology LabsNTT CorporationAtsugi-shiJapan

Personalised recommendations