Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas

  • R. Emadi
  • N. Barani
  • R. Safian
  • A. Zeidaabadi Nezhad


A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.


Photoconductive antenna Photocurrent Terahertz 


  1. G. H. Preu, S. Dohler, L. Malzer, J. Wang, and A. C. Gossard, Tunable, continuous-wave THz photomixer sources and applications, J. Appl. Phys. 109 (2011), 061301.Google Scholar
  2. D. H. Auston, K. P. Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 45 (1984), 284.Google Scholar
  3. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13 (1996), no. 11, 2424–2436.Google Scholar
  4. P. H. Siegel, Terahertz technology, IEEE transactions on microwave theory and techniques 50 (2002), 910–928.Google Scholar
  5. M. C. Teich, Field-theoretical treatment of photomixing, Appl. Phys. Lett. 14 (1969), no. 6, 201–203.Google Scholar
  6. D. Saeedkia and S. Safavi-Naeini, A comprehensive model for photomixing in ultrafast photoconductors, IEEE Photon. Technol. Lett 18 (2006), no. 13, 1457–1459.Google Scholar
  7. M. Khabiri, M. Neshat, and S. Safavi-Naeini, Hybrid computational simulation and study of continuous wave terahertz photomixers, IEEE Transactions on Therahertz and Science Technology 2 (2012), no. 6, 605–616.Google Scholar
  8. N. Khiabani, Y. Huang, Y. Shen, and S. Boyes, Theoretical modeling of a photoconductive antenna in a terahertz pulsed system, IEEE Trans. Antennas Propag. 61 (2013), no. 4, 1538–1546.Google Scholar
  9. E. R. Brown, F. W. Smith, and K. A. McIntosh, Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors, J. Appl. Phys. 73 (1993), 1480–1484.Google Scholar
  10. R. F. Pierret, Advanced semiconductor fundamentals, 2nd ed., Prentice Hall, Upper Saddle River, 2003.Google Scholar
  11. G. Rodrigrez and A. J. Taylor, Screening of the Bias Field in Terahertz Generation from Photoconductors, Opt. Lett. 14 (1996), 21.Google Scholar
  12. C. H. Lee and V. K. Mathur, Picosecond photoconductivity and its applications, IEEE J. Quantum Electon. 17 (1981), no. 10, 2098–2112.Google Scholar
  13. G. A. Mourou, C. Stancampiano, A. Antonetti, and A. Orszag, Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch, Appl. Phys. Lett. 39 (1981), no. 4, 295–365.Google Scholar
  14. J. Madeo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, Frequency tunable terahertz interdigitated photoconductive antennas, IEEE Electron. Lett. 46 (2010), 611–613.Google Scholar
  15. T. Hattori, K. Egawa, M. Sakamoto, S. Ookuma, R. Rungsawang, and T. Itatani, Large-aperture THz emitter with interdigitated electrodes, IEEE Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics 2 (2005), 457–458.Google Scholar
  16. H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer, Nat. Photon 6 (2012), 121–126.Google Scholar
  17. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun. 4 (2013), 1622.Google Scholar
  18. N. Barani, R. Emadi, A. Amirhosseini, and R. Safian, Accurate calculation of excited photocurrent in terahertz photoconductive antennas by using energy balance transport model. Third Conference on Millimeter-Wave and Terahertz Technologies (MMWATT), Tehran, 2014. pp. 1–4.Google Scholar
  19. R. Emadi, N. Barani, A. Amirhosseini, and R. Safian, Hybrid analysis of terahertz photoconductive antennas using energy balance transport model. 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, 2015. pp. 1–2.Google Scholar
  20. G. S. Smith, Directive properties of antennas for transmission into a material half-space, IEEE Trans. Antennas Propag. 32 (1984), no. 3, 232–246.Google Scholar
  21. N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, Substrate optimization for integrated circuit antennas, IEEE Transactions on Microwave Theory and Techniques. 31 (1983), no. 7, 550–557.Google Scholar
  22. S. Gregory, W. R. Tribe, B. E. Cole, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, Resonant dipole antennas for continuous-wave terahertz photomixers, Appl. Phys. Lett. 85 (2004), 1622–4.Google Scholar
  23. N. Khiabani, Y. Huang, Y. C. Shen, S. Boyes, and Q. Xu, A novel simulation method for THz photoconductive antenna characterization. 7th European Conference on Antennas and Propagation (EuCAP) (2013). pp. 751–754.Google Scholar
  24. S. Kono, M. Tani, and K. Sakai, Ultrabroadband photoconductive detection: comparison with free-space electro-optic sampling, Appl. Phys. Lett. 79 (2001), 898–900.Google Scholar
  25. F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas, Appl. Phys. Lett. 21 (2010), 96.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Emadi
    • 1
  • N. Barani
    • 1
  • R. Safian
    • 1
  • A. Zeidaabadi Nezhad
    • 1
  1. 1.Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations