Advertisement

Design and Experimental Demonstration of Cherenkov Radiation Source Based on Metallic Photonic Crystal Slow Wave Structure

  • Tao Fu
  • Zi-Qiang Yang
  • Zheng-Biao Ouyang
Article
  • 207 Downloads

Abstract

This paper presents a kind of Cherenkov radiation source based on metallic photonic crystal (MPC) slow-wave structure (SWS) cavity. The Cherenkov source designed by linear theory works at 34.7 GHz when the cathode voltage is 550 kV. The three-dimensional particle-in-cell (PIC) simulation of the SWS shows the operating frequency of 35.56 GHz with a single TM01 mode is basically consistent with the theoretically one under the same parameters. An experiment was implemented to testify the results of theory and PIC simulation. The experimental system includes a cathode emitting unit, the SWS, a magnetic system, an output antenna, and detectors. Experimental results show that the operating frequency through detecting the retarded time of wave propagation in waveguides is around 35.5 GHz with a single TM01 mode and an output power reaching 54 MW. It indicates that the MPC structure can reduce mode competition. The purpose of the paper is to show in theory and in preliminary experiment that a SWS with PBG can produce microwaves in TM01 mode. But it still provides a good experimental and theoretical foundation for designing high-power microwave devices.

Keywords

Cherenkov Metal photonic crystal Slow-wave structure Particle in cells 

PACS

84.40Fe 07.57.Hm 42.70.Qs 41.60.Bq 

Notes

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant No. 61275043), the Young Scientists Fund of National Natural Science Foundation of China (Grant Nos. 61501302 and 61307048), China Postdoctoral Science Foundation Funded Project (Grant No.2016M592534) and Shenzhen Kexin Ju funds (Grant No. CXB201105050064A).

References

  1. 1.
    S. John, Phys. Rev. Lett. 58 23 2486-2489 (1987)CrossRefGoogle Scholar
  2. 2.
    E. Yablonovitch, Phys. Rev. Lett. 58 20 2059-2062 (1987)CrossRefGoogle Scholar
  3. 3.
    E. I. Smirnova, C. Chen, M. A. Shapiro, Sirigirl J R and Temkin R J, J. App. Phys.91 3 960-968 (2002)CrossRefGoogle Scholar
  4. 4.
    A. I. Nashed, S. K. Chaudhuri and S. Safavi-Naeini, IEEE Trans. Terahertz Sci. and Technol. 2 6 642-651 (2012)CrossRefGoogle Scholar
  5. 5.
    X. J. Liu, H. Lei, T. Yu, J. J. Feng and F. J. Liao, Opt. Comm. 281 1 102-107 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Chen, B. L. Qian and H. H. Zhong, A High Power Laser and Particle Beams. 18 862-866 (2006)Google Scholar
  7. 7.
    J. R. Sirigiri, K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro and R. J. Temkin, Phys. Rev. Lett. 86 24 5628-5631 (2001)CrossRefGoogle Scholar
  8. 8.
    E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro and R. J. Temkin, Phys. Rev. Lett. 95 7 074801-1-5 (2005)Google Scholar
  9. 9.
    R. A. Marsh, M. A. Shapiro, R. J. Temkin, Proc. PAC07, June 25-29, Albuquerque, USA, p. 3005-3007 (2007)Google Scholar
  10. 10.
    E. A. Nanni, S. M. Lewis, M. A. Shapiro, R. G. Griffin and R. J. Temkin, Phys. Rev. Letts. 111 235101-1-5 (2013)Google Scholar
  11. 11.
    Y. B. Gong, H. R. Yin, Y. Y. Wei, L. N. Yue, M. J. Deng, Z. G. Lu, X. Xu, W. X. Wang, P. K. Liu and F. J. Liao, IEEE Trans. Electron Devices 57 1137-1145 (2010)CrossRefGoogle Scholar
  12. 12.
    G. O. Vela, M. S. Miller, R. W. Grow and J. M. Baird, 2006 Int. Electron. Conf., April 25-27, Monterey, USA, p.425 (2006)Google Scholar
  13. 13.
    S. G. Jeon, Y. M. Shin, J. I. Kim, S. T. Han, K. H. Jang, J. K. So and G. S. Park 2004 Int. Electron. Conf., Apr. 27-29, Monterey, USA, p.122 (2004)Google Scholar
  14. 14.
    K. H. Jang, S. G. Jeon, J. Kim, J. H. Won, J. K. So, S. H. Bak, A. Srivastava, S. S. Jung and G. S. Park, Appl. Phys. Lett. 93 21 211104 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Gao, Z. Q. Yang, Y. Xu, L. M. Qi, D. Z. Li, Z. J. Shi, F. Lan and Z. Liang, Nucl. Instrum. and Methods in Phys. Res. A 592 3 292-296 (2008)Google Scholar
  16. 16.
    X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li and Z. Liang, Chin. Phys. B 18 6 2452-2458 (2009)CrossRefGoogle Scholar
  17. 17.
    X. Gao, Z. Q. Yang, J. Hou, L. M. Qi, D. Z. Li and Z. Liang, Acta Phys. Sin. 58 2 1105-1109 (2009)Google Scholar
  18. 18.
    H. Z. Guo, Y. Carmel, W. Lou, L. M. Chen, J. Rogers ABE D. K., A. Bromborsky, W. Destler and V. L. Granatstein, IEEE Trans. Microw. Theory 40 11 2086-2094 (1992)Google Scholar
  19. 19.
    D. M. Goebel, E. A. Adler, E. S. Ponti, J. Feicht, R. L. Eisenhart and R. W. Lemke, IEEE Trans. Plasma Sci. 27 3 800-809 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Electronic Science and Technology, THz Technical Research Center of Shenzhen University, Shenzhen Key Laboratory of Micro-Nano Photon Information TechnologyShenzhen UniversityShenzhenChina
  2. 2.College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceShenzhen UniversityShenzhenChina
  3. 3.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations