THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids

  • Amin Soltani
  • Stefan F. Busch
  • Patrick Plew
  • Jan C. Balzer
  • Martin Koch


We present a THz attenuated total reflection (ATR) setup which allows for inline measurements of highly absorbing liquids. As a proof of principle, we investigate a mixture of water and ground calcium carbonate (GCC) from 5 to 40 wt%. Inline measurements prove that our THz ATR setup allows for the distinction of various concentrations. As an example, we show inline THz ATR measurements for 30 to 40 wt% for GCC watery solution, as this concentration range is of technical relevance. We obtain a sensitivity better than 2 wt%.


ATR THz- TDS Inline measurements Industrial application 


  1. 1.
    J. E. Kogel, Industrial minerals & rocks: commodities, markets, and uses, vol. 44, no. 03. SME, 2006.Google Scholar
  2. 2.
    D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B, vol. 7, no. 10, p. 2006, Oct. 1990.Google Scholar
  3. 3.
    P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev., vol. 5, no. 1, pp. 124–166, Jan. 2011.Google Scholar
  4. 4.
    C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng., vol. 47, no. 3, p. 037003, Mar. 2008.Google Scholar
  5. 5.
    S. F. Busch, T. Probst, L. Duschek, R. Wilk, M. Voitsch, F. Fender, S. Lubbecke, G. Gartner, V. P. Wallace, and M. Koch, “Inline monitoring of paper thickness in an industrial setting,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013, pp. 1–2.Google Scholar
  6. 6.
    S. Krimi, J. Klier, M. Herrmann, J. Jonuscheit, and R. Beigang, “Inline multilayer thickness sensing by using terahertz time-domain spectroscopy in reflection geometry,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013, pp. 1–2.Google Scholar
  7. 7.
    O. Peters, M. Schwerdtfeger, S. Wietzke, S. Sostmann, R. Scheunemann, R. Wilk, R. Holzwarth, M. Koch, and B. M. Fischer, “Terahertz spectroscopy for rubber production testing,” Polym. Test., vol. 32, no. 5, pp. 932–936, Aug. 2013.Google Scholar
  8. 8.
    D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation.,” Opt. Express, vol. 16, no. 12, pp. 9060–9066, 2008.CrossRefGoogle Scholar
  9. 9.
    P. Mousavi, F. Haran, D. Jez, F. Santosa, and J. S. Dodge, “Simultaneous composition and thickness measurement of paper using terahertz time-domain spectroscopy,” Appl. Opt., vol. 48, no. 33, pp. 6541–6546, Nov. 2009.Google Scholar
  10. 10.
    P. U. Jepsen, U. Møller, and H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy.,” Opt. Express, vol. 15, no. 22, pp. 14717–14737, Oct. 2007.Google Scholar
  11. 11.
    P. U. Jepsen, J. K. Jensen, and U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express, vol. 16, no. 13, p. 9318, Jun. 2008.Google Scholar
  12. 12.
    U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids [Invited],” J. Opt. Soc. Am. B, vol. 26, no. 9, p. A113, Sep. 2009.Google Scholar
  13. 13.
    H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses,” Jpn. J. Appl. Phys., vol. 43, no. No. 10A, pp. L1287–L1289, Sep. 2004.Google Scholar
  14. 14.
    N. J. Harrick and A. I. Carlson, “Internal Reflection Spectroscopy: Validity of Effective Thickness Equations,” Appl. Opt., vol. 10, no. 1, p. 19, Jan. 1971.Google Scholar
  15. 15.
    H. Yada, M. Nagai, and K. Tanaka, “The intermolecular stretching vibration mode in water isotopes investigated with broadband terahertz time-domain spectroscopy,” Chem. Phys. Lett., vol. 473, no. 4–6, pp. 279–283, May 2009.Google Scholar
  16. 16.
    M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millimeter Waves, vol. 27, no. 4, pp. 505–515, Feb. 2007.Google Scholar
  17. 17.
    A. Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M. Koch, and W. Withayachumnankul, “Attenuated total reflection terahertz time-domain spectroscopy: uncertainty analysis and reduction scheme,” IEEE Trans. Terahertz Sci. Technol., 2015.Google Scholar
  18. 18.
    A. Soltani, T. Probst, S. F. Busch, M. Schwerdtfeger, E. Castro-Camus, and M. Koch, “Error from Delay Drift in Terahertz Attenuated Total Reflection Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves, vol. 35, no. 5, pp. 468–477, Mar. 2014.Google Scholar
  19. 19.
    C. Ro̸nne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V Mikkelsen, and S. R. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys., vol. 107, no. 14, p. 5319, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amin Soltani
    • 1
  • Stefan F. Busch
    • 1
  • Patrick Plew
    • 2
  • Jan C. Balzer
    • 1
  • Martin Koch
    • 1
  1. 1.Faculty of Physics and Material Sciences CenterPhilipps-Universität MarburgMarburgGermany
  2. 2.Papiertechnische StiftungHeidenauGermany

Personalised recommendations