Advertisement

Measurement of Laser Frequencies from CD3OH and CD3OD up to 8.6 THz

  • E. C. C. Vasconcellos
  • K. M. Evenson
  • H. Hockel
  • M. Lauters
  • L. R. Zink
  • M. Jackson
Article
  • 109 Downloads

Abstract

Twenty two laser frequencies, whose values range from 1.6 to 8.6 THz, have been measured for the first time using heterodyne techniques. These laser emissions were generated by an optically pumped molecular laser that used either CD3OH or CD3OD as its lasing medium. At least three of the observed laser emissions generated by CD3OH were discovered during this investigation and the first laser frequencies measured for CD3OH above 8 THz are reported. The laser frequencies were measured with fractional uncertainties up to ± 2 × 10−7, of sufficient accuracy to confirm two proposed far-infrared laser assignments. The offset frequency of the CO2 pump laser with respect to its center frequency was also measured for nearly all laser emissions generated by CD3OH.

Keywords

Optically pumped molecular laser CD3OH CD3OD 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation (Award Nos. 0078812 and 0406556), the Washington Space Grant Consortium (Award No. NNX10AK64H), and the Central Washington University Faculty Sabbatical Program. We are also grateful to B. Freeman, C. Gerke, P. Mehl, M. Smith, and E. Westbay for their assistance in measuring several CD3OH laser frequencies.

References

  1. 1.
    N. G. Douglas, Millimetre and Submillimetre Wavelength Lasers: A Handbook of CW Measurements, Springer Series in Optical Sciences, Volume 61, H. Walther, Ed., Springer-Verlag, Berlin, New York (1989).Google Scholar
  2. 2.
    M. J. Weber, Ed., Handbook of Laser Wavelengths, CRC Press, Boca Raton, Florida (1999).Google Scholar
  3. 3.
    D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” International Journal of Infrared and Millimeter Waves, 15, pp. 1-44 (1994).Google Scholar
  4. 4.
    S. C. Zerbetto and E. C. C. Vasconcellos, “Far infrared laser lines produced by methanol and its isotopic species: A review,” International Journal of Infrared and Millimeter Waves, 15, pp. 889-933 (1994).Google Scholar
  5. 5.
    G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, Microwave, Infrared and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm −1, CRC Press, Boca Raton, Florida (1995).Google Scholar
  6. 6.
    L.-H. Xu, R. M. Lees, E. C. C. Vasconcellos, S. C. Zerbetto, L. R. Zink, and K. M. Evenson, “Methanol and the optically pumped far-infrared laser,” IEEE Journal of Quantum Electronics, 32, pp. 392-399 (1996).Google Scholar
  7. 7.
    Infrared and Millimeter Waves, Volume 1 - Sources of Radiation (and subsequent volumes within the series), K. J. Button, Ed., Academic Press, New York (1984).Google Scholar
  8. 8.
    G. W. Chantry, Long-Wave Optics: The Science and Technology of Infrared and Near-millimetre Waves, Volumes 1 and 2, Academic Press, London (1984).Google Scholar
  9. 9.
    S. Jacobsson, “Review: Optically pumped far infrared lasers,” Infrared Physics, 29, pp. 853-874 (1989).Google Scholar
  10. 10.
    K. M. Evenson, R. J. Saykally, D. A. Jennings, R. F. Curl, and J. M. Brown, “Far Infrared Laser Magnetic Resonance” in Chemical and Biochemical Applications of Lasers, pp. 95-138, Volume V, C. Bradley Moore, Ed., Academic Press, New York (1980).Google Scholar
  11. 11.
    E. C. C. Vasconcellos, S. C. Zerbetto, J. C. Holecek, and K. M. Evenson, “Short-wavelength far-infrared laser cavity yielding new lines in methanol,” Optics Letters, 20, pp. 1392-1393 (1995).Google Scholar
  12. 12.
    M. Jackson, E. M. Telles, M. D. Allen, and K. M. Evenson, “Short-wavelength far-infrared laser cavity yielding new laser emissions in CD3OH,” Applied Physics B, 72, pp. 815-818 (2001).Google Scholar
  13. 13.
    M. Jackson, L. R. Zink, T. J. Garrod, S. Petersen, A. Stokes, and M. Theisen, “The generation and frequency measurement of short-wavelength far-infrared laser emissions,” IEEE Journal of Quantum Electronics, 41, pp. 1528-1532 (2005).Google Scholar
  14. 14.
    K. M. Evenson, M. Inguscio, and D. A. Jennings, “Point contact diode at laser frequencies,” Journal of Applied Physics, 57, pp. 956-960 (1985).Google Scholar
  15. 15.
    F. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimènez, “Far infrared frequency synthesis with stabilized CO2 lasers: Accurate measurements of the water vapor and methyl alcohol laser frequencies,” IEEE Journal of Quantum Electronics, 11, pp. 838-843 (1975).Google Scholar
  16. 16.
    C. Freed and A. Javan, “Standing-wave saturation resonances in the CO2 10.6 μ transitions observed in a low-pressure room-temperature absorber gas,” Applied Physics Letters, 17, pp. 53-56 (1970).Google Scholar
  17. 17.
    H. Sigg, H. J. A. Bluyssen, and P. Wyder, “New laser lines with wavelengths from λ = 61.7 μm down to λ = 27.7 μm in optically pumped CH3OH and CD3OH,” IEEE Journal of Quantum Electronics, 20, pp. 616-617 (1984).Google Scholar
  18. 18.
    G. Carelli, N. Ioli, A. Moretti, D. Pereira, and F. Strumia, “New large offset far-infrared laser lines from CD3OH,” Applied Physics B, 44, pp. 111-117 (1987).Google Scholar
  19. 19.
    R. J. Saykally, K. M. Evenson, D. A. Jennings, L. R. Zink, and A. Scalabrin, “New FIR laser lines and frequency measurements for optically pumped CD3OH,” International Journal of Infrared and Millimeter Waves, 8, pp. 653-662 (1987).Google Scholar
  20. 20.
    E. C. C. Vasconcellos, S. C. Zerbetto, L. R. Zink, and K. M. Evenson, “Optically pumped far-infrared laser lines of methanol isotopomers: 12CD3OH, 12CH3OD, and 12CH2DOH,” International Journal of Infrared and Millimeter Waves, 21, pp. 477-483 (2000).Google Scholar
  21. 21.
    S. Huant, M. A. Hopkins, K. Karrai, G. Dampne, L. J. Nicholas, and L. C. Brunel, “New wavelength measurements and laser lines in optically pumped methanol and methanol analogues,” Revue de Physique Appliquée, 22, pp. 205-206 (1987).Google Scholar
  22. 22.
    E. M. Telles, L. R. Zink, and K. M. Evenson, “New FIR laser lines from CD3OH,” International Journal of Infrared and Millimeter Waves, 19, pp. 1627-1631 (1998).Google Scholar
  23. 23.
    E. J. Danielewicz and C. O. Weiss, “New CW far-infrared laser lines from CO2 laser-pumped CD3OH,” IEEE Journal of Quantum Electronics, 14, pp. 458-459 (1978).Google Scholar
  24. 24.
    R. Wessel, T. Theiler, and F. Keilmann, “Pulsed high-power mid-infrared gas lasers,” IEEE Journal of Quantum Electronics, 23, pp. 385-387 (1987).Google Scholar
  25. 25.
    E. C. C. Vasconcellos, C. DiRocco, B. Chuzles, J. Knier, J. Schwalbe, D. Sutton, and M. Jackson, “Reinvestigation of far-infrared laser emissions from hydrazine and deuterated isotopes of difluoromethane and methanol,” Applied Physics B, 77, pp. 97-99 (2003).Google Scholar
  26. 26.
    N. Ioli, A. Moretti, and D. Pereira, “Molecular spectroscopy on optically pumped Stark FIR lasers: CD3OH line assignments,” in Interaction of Radiation with Matter, A Volume in Honour of Adriano Gozzini, pp. 387-401, Quaderni della Scuola Normale Superiore, Pisa (1987).Google Scholar
  27. 27.
    G. Carelli, N. Ioli, A. Moretti, D. Pereria, and F. Strumia, “Measurements and assignments of new large offset CD3OH FIR laser lines,” International Journal of Infrared and Millimeter Waves, 12, pp. 557-571 (1991).Google Scholar
  28. 28.
    D. Pereira, C. A. Ferrari, and A. Scalabrin, “New optically pumped FIR laser lines in CD3OH,” International Journal of Infrared and Millimeter Waves, 7, pp. 1241-1250 (1986).Google Scholar
  29. 29.
    T. Yoshida, M. Kobayashi, T. Yishihara, K. Sakai, and S. Fujita, “Stark effect in submillimeter laser lines from optically pumped CH3OH and CD3OD,” Optics Communications, 40, pp. 45-48 (1981).Google Scholar
  30. 30.
    D. Pereira, E. C. C. Vasconcellos, A. Scalabrin, K. M. Evenson, F. R. Petersen, and D. A. Jennings, “Measurements of new FIR laser lines in CD3OD,” International Journal of Infrared and Millimeter Waves, 6, pp. 877-882 (1985).Google Scholar
  31. 31.
    E. C. C. Vasconcellos, A. Scalabrin, F. R. Petersen, and K. M. Evenson, “New FIR laser lines and frequency measurements in CD3OD,” International Journal of Infrared and Millimeter Waves, 2, pp. 533-539 (1981).Google Scholar
  32. 32.
    E. C. C. Vasconcellos, M. D. Allen, L. R. Zink, and K. M. Evenson, “Optically-pumped far-infrared laser lines in hydrazine, methanol, heavy water, and ammonia: New laser lines and frequency measurements,” International Journal of Infrared and Millimeter Waves, 21, pp. 725-730 (2000).Google Scholar
  33. 33.
    H. Hockel and M. Lauters, “Far-infrared frequency measurements using the three-laser heterodyne technique,” The Journal of Undergraduate Research in Physics, pp. 59-62 (2003).Google Scholar
  34. 34.
    M. D. Allen, K. M. Evenson, D. A. Gillett, and J. M. Brown, “Far-infrared laser magnetic resonance spectroscopic study of the ν 2 bending fundamental of the CCN radical in its \(\tilde {X}^{2} {\Pi }_{\mathrm {r}}\) state,” Journal of Molecular Spectroscopy, 201, pp. 18-29 (2000).Google Scholar
  35. 35.
    I. Mukhopadhyay, M. Mollabashi, R. M. Lees, and J. W. C. Johns, “Application of high-resolution Fourier transform spectroscopy to Fermi resonance and the assignment of far-infrared laser lines in CD3OH,” Journal of Molecular Spectroscopy, 138, pp. 521-540 (1989).Google Scholar
  36. 36.
    I. Mukhopadhyay, M. Mollabashi, and R. M. Lees, “High-resolution spectroscopy of methanol-D3: assignments and predictions of optically pumped far-infrared laser lines,” Journal of the Optical Society of America B, 14, pp. 2227-2237 (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. C. C. Vasconcellos
    • 1
  • K. M. Evenson
    • 2
  • H. Hockel
    • 3
  • M. Lauters
    • 3
  • L. R. Zink
    • 3
  • M. Jackson
    • 4
  1. 1.Departamento de Eletrônica Quântica, Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil
  2. 2.Time and Frequency Division, National Institute of Standards and TechnologyBoulderUSA
  3. 3.Department of PhysicsUniversity of Wisconsin-La CrosseLa CrosseUSA
  4. 4.Department of PhysicsCentral Washington UniversityEllensburgUSA

Personalised recommendations