Terahertz Spectra of L-Ascorbic Acid and Thiamine Hydrochloride Studied by Terahertz Spectroscopy and Density Functional Theory

  • Ling Jiang
  • Miao Li
  • Chun Li
  • Haijun Sun
  • Li Xu
  • Biaobin Jin
  • Yunfei Liu


We have investigated the terahertz spectra of L-ascorbic acid and thiamine hydrochloride measured by terahertz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy (FTIR). The measured absorption spectra were demonstrated to be in good agreement with the results simulated by Density Functional Theory (DFT) using hybrid functional B3LYP with basis set of 6-31G (d), except with slight frequency shift and few peaks missing. We presented the comparison of measured spectra by the FTIR spectroscopy employing low temperature silicon bolometer as detector and the TDS system. The measured spectra of the L-ascorbic acid showed shoulder bands at 0.25, 1.1, 1.5, 1.82, 2.03, 2.30, 2.44, 2.67, 2.97, 3.12, and 3.40 THz, respectively. The spectra of the thiamine hydrochloride show shoulder bands at 0.48, 1.11, 1.57, 1.75, 1.92, 2.08, 2.31, 2.53, 2.69, 2.85, 3.12, 3.22, and 3.31 THz. Most absorption peaks of the two samples agree with the results simulated by Density Function Theory (DFT) method of Gaussian 09 software. In our work, more spectral peaks based on experimental and theoretical results were found in comparison to that of other groups, since we employed higher sensitive FTIR measurement system and considered the effect of number of molecule unit in simulation. The study suggests that the effect of intermolecular vibration is stronger than intramolecular interaction on the absorption bands in THz region.


FTIR TDS L-ascorbic acid thiamine hydrochloride DFT method 



This work is supported by the National Natural Science Foundation of China under Contracts 31170668 and 31200541, by the Natural Science Foundation of Jiangsu province under contract BK2012417, by the returned personnel foundation of ministry of education, and by the fund of high level and returned personnel of Nanjing Forestry University.


  1. 1.
    K. Sakai (ed.), Terahertz Optoelectronics (Topics in Applied Physics vol. 97) (Springer-Verlag, Berlin, (2005).Google Scholar
  2. 2.
    M. Nagel, F. Richter, P. Haring-Bolivar, and H. Kurtz, Phys. Med. Biol. 48, 3625 (2003).CrossRefGoogle Scholar
  3. 3.
    R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Amone, E. H. Linfield, and M. Pepper, J. Invest. Dermatol. 120, 72-78 (2003).CrossRefGoogle Scholar
  4. 4.
    K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Miyami, Jpn. J. Appl. Phys., Part 2 43, L414-L417 (2004).Google Scholar
  5. 5.
    K. Kawase, Y. Ogawa, and Y. Watanabe, Opt. Express 11, 2549-2554 (2003).CrossRefGoogle Scholar
  6. 6.
    K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramaru, T. Isu, and N. Tomita, Appl. Phys. Lett. 85, 5194-5196 (2004).CrossRefGoogle Scholar
  7. 7.
    M. Hineno and H. Yoshinaga, Spectrochim. Acta Part A: Molecul. Biomolecul. Spectr. 30, 411-416 (1974).CrossRefGoogle Scholar
  8. 8.
    P. F. Taday, I. V. Bradley, D. D. Arnone, and M. Pepper, J. Pharm. Sci. 92, 831-838 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Walther, P. Plochocka, B. Fisher, H. Helm, and P. Uhd Jepsen, Biopolymers 67, 310-313 (2002).CrossRefGoogle Scholar
  10. 10.
    R. J. Falconder and A. G. Markelz, J. Infrared, Millimeter, Terahertz Waves 33, 973-988 (2012).CrossRefGoogle Scholar
  11. 11.
    Yu Bin, Master thesis, Capital Normal University (2009).Google Scholar
  12. 12.
    Luo Zhixun, Fang Yan and Yao Jiannian, Trends in Applied Sciences Research 2 (5), 426-432 (2007).CrossRefGoogle Scholar
  13. 13.
    Yan Zhigang, PhD thesis, Zhejiang University (2008).Google Scholar
  14. 14.
    Renbo Song, PhD thesis, Lehigh University (2009).Google Scholar
  15. 15.
    Jun Dong, PhD thesis, McGill University (1996).Google Scholar
  16. 16.
    R. J. Bell, New York, Academic Press Inc. (1972).Google Scholar
  17. 17.
    D. A. Skoog, 4th ed., Saunders College Publishing (1992).Google Scholar
  18. 18.
    M. Frisch, G. Trucks, J. Cheeseman et al, GAUSSIAN 09 (Revision D. 01), Gaussian, Inc., Pittsburgh PA, 2013.Google Scholar
  19. 19.
    Matthew D. King and Timothy M. Korter, J. Phys. Chem. A 115, 14391-14396 (2011).CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    M.R. Kutteruf, C.M. Brown, L.K. Iwaki, M.B. Campbell, T.M. Korter, E.J. Heilweil, Chemical Physics Letters 375, 337-343 (2003).CrossRefGoogle Scholar
  23. 23.
    Chengteh Lee, Weitao Yang, and Robert G. Parr, Phys Rev B 37, 785-789, 1988.CrossRefGoogle Scholar
  24. 24.
    Bruce S. Hudson, J. Phys. Chem. A 105, 3949-3960 (2001).CrossRefGoogle Scholar
  25. 25.
    By Jan Hvosled, Acta Cryst. B 24 (23), 1431 (1968).Google Scholar
  26. 26.
    By J. Kraut and H. J. Reed, Acta Cryst. 15, 747 (1962).Google Scholar
  27. 27.
    Thomas Kleine-Ostmann, Rafal Wilk, Frank Rutz, Martin Koch, Henning Niemann, Bernd Guttler, Kai Brandhorst, and Jorg Grunenberg, CHEMPHYSCHEM 9, 544-547 (2008).CrossRefGoogle Scholar
  28. 28.
    S. C. Shen, L. Santo, and L. Genzel, Int J Infrared Milli. Waves 28, 595-610 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ling Jiang
    • 1
  • Miao Li
    • 1
  • Chun Li
    • 1
  • Haijun Sun
    • 2
  • Li Xu
    • 2
  • Biaobin Jin
    • 3
  • Yunfei Liu
    • 1
  1. 1.College of Information Science and TechnologyNanjing Forestry UniversityNanjingChina
  2. 2.Advanced Analysis and Testing CenterNanjing Forestry UniversityNanjingChina
  3. 3.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations