Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal

  • Kyu-Sup Lee
  • Do-Kyeong Ko
  • Shunji Takekawa
  • Kenji Kitamura
  • Nan Ei Yu


Terahertz waves are generated using a femtosecond laser pulse in a periodically poled stoichiometric lithium tantalate crystal and simultaneously detected via a non-collinear optical parametric interaction inside the same crystal. Real time up-conversion signal between the generated THz and an optic probe pulses is measured depending on the beam overlapped conditions using a general silicon-photodiode for the THz detection. The non-collinear geometry is to facilitate manipulated property of the position-dependent bandwidth at narrow and broad bandwidths of 45 GHz and 3.3 THz, respectively at the one crystal. Furthermore, an aperture effect at the detection part is characterized as the function of size and position owing to the spatial distribution of the frequency conversion signal and it is applied in optimization of the in-situ detection scheme.


Terahertz generation and detection Quasi-phase-matching Periodically Poled lithium tantalate crystal In-situ terahertz measurement 



This research was partially supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (R15-2008-006-02001-0), (No. 2010-0009146) and also by the Asian Laser Center Program provided by the GIST. Author (N. E. Yu) was also partially supported by the Happy tech. program through the NRF (No. 2011-0020956).


  1. 1.
    H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).CrossRefGoogle Scholar
  2. 2.
    S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, Phys. Rev. Lett. 97, 176805 (2006).CrossRefGoogle Scholar
  3. 3.
    S. Matsuura, M. Tani, H. Abe, K. Sakai, H. Ozeki, and S. Saito, J. Mol. Spectrosc. 187, 97 (1998).CrossRefGoogle Scholar
  4. 4.
    K. Kawase, Opt. Photon. News 15, 34 (2004).CrossRefGoogle Scholar
  5. 5.
    Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, J. Appl. Phys. 103, 034307 (2008).CrossRefGoogle Scholar
  6. 6.
    T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, Phys. Rev. Lett. 90, 055508 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Federici, and L. Moeller, J. Appl. Phys. 107, 111101 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, Opt. Express 19, 19114 (2011).CrossRefGoogle Scholar
  9. 9.
    J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, J. Appl. Phys. 104, 033111 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, Appl. Phys. Lett. 99, 071102 (2011).CrossRefGoogle Scholar
  11. 11.
    Y. Liu, S.-G. Park, and A. M. Weiner, Opt. Lett. 21, 1762 (1996).CrossRefGoogle Scholar
  12. 12.
    A. G. Stepanov, J. Hebling, J. Kuhl, Opt. Express 12, 4650 (2004)CrossRefGoogle Scholar
  13. 13.
    A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, Phys. Rev. Lett. 103, 095003 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Bielawski, C. Evain, T. Hara, M. hosaka, M. Katoh, S. Kimura, A. Mochihashi, M. Shimada, C. Szwaj, T. Takahashi, and Y. Takashima, Nat. Phys. 4, 390 (2008).CrossRefGoogle Scholar
  15. 15.
    T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, Opt. Express 14, 1582 (2006).CrossRefGoogle Scholar
  16. 16.
    N. E. Yu, C. Kang, H. K. Yoo, C. Jung, Y. L. Lee, C. S. Kee, D. K. Ko, J. Lee, K. Kitamura, and S. Takekawa, Appl. Phys. Lett. 93, 041104 (2008).CrossRefGoogle Scholar
  17. 17.
    N. E. Yu, K. S. Lee, D. K. Ko, C. Kang, S. Takekawa, and K. Kitamura, Opt. Commun. 284, 1395 (2011).CrossRefGoogle Scholar
  18. 18.
    N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, Appl. Phys. Express 7, 012101 (2014).CrossRefGoogle Scholar
  19. 19.
    K. Kawase, J.-I. Shikata, H. Minamide, K. Imai, and H. Ito, Appl. Opt. 40, 1423 (2001).CrossRefGoogle Scholar
  20. 20.
    N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, Nat. Mater. 1, 95 (2002).CrossRefGoogle Scholar
  21. 21.
    G. H. Ma, S. H. Tang, G. K. Kitaeva, and I. I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006).CrossRefGoogle Scholar
  22. 22.
    G. H. Ma, Q. B. Zhu, G. Kh. Kitaeva, and I. I. Naumuva, Opt. Commun. 273, 549 (2007).CrossRefGoogle Scholar
  23. 23.
    G. K. Kitaeva, Phys. Rev. A 76, 043841 (2007).CrossRefGoogle Scholar
  24. 24.
    W. M. Liu, A. N. Tuchak, Y. H. Yan, G. Kh. Kitaeva, and S. H. Tang, Opt. Lett. 34, 2027 (2009).CrossRefGoogle Scholar
  25. 25.
    I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, Appl. Phys. B 96, 423 (2009).CrossRefGoogle Scholar
  26. 26.
    M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, Nat. Photonics 3, 152 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kyu-Sup Lee
    • 1
  • Do-Kyeong Ko
    • 1
    • 2
  • Shunji Takekawa
    • 3
  • Kenji Kitamura
    • 3
  • Nan Ei Yu
    • 2
  1. 1.Department of Photonics and Applied PhysicsGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Advanced Photonics Research InstituteGISTGwangjuRepublic of Korea
  3. 3.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations