A W-band Third Harmonic Gyrotron with an Iris Cavity

  • Dimin Sun
  • Huaibi Chen
  • Guowu Ma
  • Wenqiang Lei
  • Hongbin Chen
  • Fanbao Meng


The design and experimental results of a W-band gyrotron operating at the third cyclotron harmonic are presented. The gyrotron is designed to operate at the TE61 mode, which is significantly distinct from competing modes. An iris cavity is employed for the purpose of trapping the third harmonic mode more effectively and lowering its start current. In the experiment, the gyrotron is drived by a triode magnetron injection gun (MIG) which can produce a 45 kV, 3 A electron beam. When maximum axial magnetic field is 1.22 T, a single mode third harmonic gyrotron radiation is observed with the frequency of 94.86 GHz. The maximum output power is 5.5 kW, corresponding to an efficiency of 4%. Another third harmonic mode TE02 is also detected at 88.8 GHz, with maximum output power of 1.5 kW.


Gyrotron Harmonic Iris cavity Millimeter wave W-band 


  1. 1.
    K. R. Chu, The electron cyclotron maser, Rev. Mod. Phys., 76, 489–540 (2004).CrossRefGoogle Scholar
  2. 2.
    V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, The gyrotron, IEEE trans. Microw. Theory Tech., 25, 514–521 (1977).CrossRefGoogle Scholar
  3. 3.
    V. L. Bratman, M. Y. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. Tatematsu, and V. E. Zapevalov, Review of subterahertz and terahertz Gyrodevices at IAP RAS and FIR FU, IEEE Trans. Plasma Sci., 37, 36–43 (2009).CrossRefGoogle Scholar
  4. 4.
    V. Erckmann, G. Dammertz, D. Dorst, L. Empacher, W. Forster, G. Gantenbein, T. Geist, W. Kasparek, H. P. Laqua, G. A. Muller, M. Thummn, M. Weissgerber, and H. Wobig, ECRH and ECCD with High Power Gyrotrons at the Stellarators W7-AS and W7-X, IEEE Trans. Plasma Sci., 27, 538–546 (1999).CrossRefGoogle Scholar
  5. 5.
    I. Ogawa, M. Iwata, T. Idehara, K. Kawahata, H. Iguchi and A. Ejiri, Plasma scattering measurement using a submillimeter wave gyrotron (gyrotron FU-II) as a power source, Fusion Engin. Design, 34/35, 455–458 (1997).Google Scholar
  6. 6.
    M. Thumm, High Power Gyro-Devices for Plasma Heating and Other Applications, Int. J. Infrared and Millim. Waves, 26, 483–503 (2005).CrossRefGoogle Scholar
  7. 7.
    D. Lewis, M. A. Imam, L. K. Kurihara, A. W. Fliflet, A. Kinkead, Scott Miserendino, S. Egorov, R. W. Bruce, S. Gold, and A. M. Jung, Material processing with a high frequency millimeter-wave source, Mater. Manuf. Process., 18, 151–168 (2003).Google Scholar
  8. 8.
    W. M. Manheimer, On the possibility of high power gyrotrons for super range resolution radar and atmospheric sensing, Int. J. Electron., 72, 1165–1189 (1992).CrossRefGoogle Scholar
  9. 9.
    N. Kumar, U. Songh, T. P. Singh, and A. K. Sinha, A review on the applications of high power, high frequency microwave source: gyrotron, J. Fusion Energ., 30, 257–276 (2011).CrossRefGoogle Scholar
  10. 10.
    T. Tatsukawa, T. Maeda, H. Sasai, T. Idehara, I. Mekata, T. Saito and T. Kanemaki, ESR spectrometer with a wide frequency-range using a gyrotron as a radiation power source, Int. J. Infrared Millim. Waves, 16, 293–305 (1995).CrossRefGoogle Scholar
  11. 11.
    L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Single, and R. J. Griffin, Dynamic nuclear polarization with a cyclotron resonance maser at 5 T, Phys. Rev. Lett., 71, 3561–3564 (1993).CrossRefGoogle Scholar
  12. 12.
    T. Idehara, K. Kosuga, La Agusu, I. Ogawa, H. Takahashi, M. E. Smith and R. Dupree, Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR spectroscopy, J. Infrared Milli. Terahz Waves, 31, 763–774 (2010).Google Scholar
  13. 13.
    M. Thumm, State-of-the-art of high power gyro-devices and free electron masers update 2008, Report FZKA 7467, Forschungszentrum Karlsruhe (2009).Google Scholar
  14. 14.
    L. Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, and S. Mitsudo. Design of a CW 1 THz gyrotron (Gyrotron FU CW III) using a 20 T superconducting magnet, Int. J. Infrared Millim. Waves, 28, 315–328 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Spira-Hakkarainen, K. E. Kreischer, and R. J. Temkin, Submillimeter-wave harmonic gyrotron experiment, IEEE Trans. Plasma Sci., 18, 334–342, 1990.CrossRefGoogle Scholar
  16. 16.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator, IEEE Trans. Plasma Sci., 34, 524–533 (2006).CrossRefGoogle Scholar
  17. 17.
    T. Notake, T. Saito, Y. Tatematsu, A. Fujii, S. Ogasawara, L. Agusu, and T. Idehara, Development of a novel high power sub-THz second harmonic gyrotron, Phys. Rev. Lett., 103, 50021–50024 (2009).CrossRefGoogle Scholar
  18. 18.
    T. Idehara, T. Tatsukawa, I. Ogawa, S. Wada, K. Yoshizue, F. Inoue, and G. F. Brand, Single mode operation of a submillimeter wave gyrotron at the third harmonic resonance, Phys. Fluids B, 4, 769–770, (1992).CrossRefGoogle Scholar
  19. 19.
    S. A. Malygin, A high-power gyrotron operating at the third harmonic of the cyclotron frequency, Sov. J. Commun. Technol. Electron., 31, 106–108 (1986).Google Scholar
  20. 20.
    H. Li, Z. Xie, W. Wang, Y. Luo, P. Du, X. Den, H. Wang, S. Yu, X. Niu, L. Wang, and S. Liu, A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system, IEEE Trans. Plasma Sci., 31, 264–271 (2003).CrossRefGoogle Scholar
  21. 21.
    M. Glyavin, A. Luchinin, V. Manuilov, and G. Nusinovich, Design of a subterahertz, third-harmonic, continuous-wave gyrotron, IEEE Trans. Plasma Sci., 36, 591–596 (2008).CrossRefGoogle Scholar
  22. 22.
    J. M. Neilson, M. Read and R. L. Ives, Design and Assembly of a Permanent Magnet Gyrotron for Active Denial Systems, Proc. of IEEE 11th Int. Vacuum Electron. Conf., Monterey, CA (2010).Google Scholar
  23. 23.
    V. L. Bratman, Y. K. Kalynov, V. N. Manuilov, and S. V. Samsonov, Submillimeter-wave large-orbit gyrotron, Radiophys. Quantum Electron., 48, 731–736 (2005).Google Scholar
  24. 24.
    V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov, Large-orbit gyrotron operating in the terahertz frequency range,” Phys. Rev. Lett., 102, 1–4 (2009).CrossRefGoogle Scholar
  25. 25.
    Fengping Li, Wenlong He, A. W. Cross, C. R. Donaldson, Liang Zhang, D. R. Phelps, and K. Ronald, Design and Simulation of a ∼390 GHz 7th Harmonic Gyrotron using a large orbit electron beam, Journal of Physics D: Applied Physics, 43, 155204 (2010).Google Scholar
  26. 26.
    G. S. Nusinovich, Introduction to the Physics of Gyrotron. Johns Hopkins Univ. Press, Baltimore (2004).Google Scholar
  27. 27.
    V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. I. Petelin, and P. S. Strelkov, Relativistic gyrotrons and cyclotron autoresonance masers, Int. J. Electron., 51, 541–567 (1981).CrossRefGoogle Scholar
  28. 28.
    R. J. Temkin, Analytic theory of a tapered gyrotron resonator, Int. J. Infrared and Millim. Waves, 2, 629–650 (1981).CrossRefGoogle Scholar
  29. 29.
    B. G. Danly and R. J. Temkin, Generalized nonlinear harmonic gyrotron theory, Phys. Fluids, 29, 561–567 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dimin Sun
    • 1
  • Huaibi Chen
    • 1
  • Guowu Ma
    • 2
  • Wenqiang Lei
    • 2
  • Hongbin Chen
    • 2
  • Fanbao Meng
    • 2
  1. 1.Department of Engineering PhysicsTsinghua UniversityBeijingChina
  2. 2.Institute of Applied ElectronicsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations